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Near-IR Polarimetry of The Star-Forming Regions  
around 30 Doradus 

 
 

ABSTRACT 
 
 

 

The 20′ⅹ20′ region around 30 Doradus in the Large Magellanic Cloud (LMC) were 

observed in the near-infrared wavelength using the Infrared Survey Facility 1.4 m telescope. We 

obtained polarimetry data in the J, H, and Ks bands using SIRIUS polarimeter, SIRPOL. We 

measured Stokes parameters of point-like sources to derive the degree of polarization and the 

polarization position angle. We examine the possible photometric errors to analyze polarization 

data for different aperture radii. To separate the Galactic foreground sources which can 

contaminate reliability of our polarimetric data, we apply methods to select the Galactic 

foreground sources. Color-magnitude diagram and proper motions for the sources are discussed 

as the methods, but color-magnitude diagram cannot show any significant difference with the 

main LMC sources. We conclude that the proper motion is more reliable to extract the 

embedded sources in the foreground stars. These data reduction and the analysis methods will 

be applied to the large area survey data in the LMC. 
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1. INTRODUCTION 

 

Magnetic fields are an important component of the interstellar medium. They 

channel gas flows, accelerate and distribute energy from cosmic rays, and may be a 

significant component of the galactic pressure, especially in low mass galaxies (Kepley 

2009).  

 

One of the orientation mechanisms (Davis & Greenstein 1951) produces grain 

alignment with respect to magnetic field, even if the alignment mechanism is of non-

magnetic nature. This alignment is true due to the rapid precession of grains about 

magnetic field. This precession stems from the substantial magnetic moment that grains 

get due to their rotation (Dolginov & Mytrophanov 1976). In molecular clouds, dust 

grains get aligned with respect to magnetic field as they tend to be aligned with their long 

axes perpendicular to magnetic field. This mechanism is based on the direct interaction 

of rotating grains with the interstellar magnetic field (Lazarian 2006). Polarization of 

starlight may arise from absorption and scattering by elongated dust grains that are at 

least partially aligned by magnetic fields (Davis & Greenstein 1951). The magnetic field 

direction can be measured by observing the dichroic polarization of background stars in 

the optical and near-IR bands and/or the linearly polarized emission from the aligned 

dust grains in the mid-IR and far-IR bands (Kandori et al. 2007). Dichroism is the 

differential extinction of orthogonally polarized radiation components, because 

interstellar dust particles are non-spherical (Tinbergen 1996). 

  

The Large Magellanic Cloud (LMC) is one of the nearest extragalaxies. The 

interstellar medium of the LMC has quite different properties from those of our Galaxy, 

e.g., a lower metallicity and different dust properties (Pak et al. 1998; Nakajima et al. 

2007). The LMC has revealed the presence of large-scale magnetic fields (Gaensler et al. 

2005). Optical polarization observations (Schmidt 1970, 1976; Mathewson and Ford 

1970) showed a regular polarization distribution. Wayte (1990) showed that the magnetic 

field threads both LMC and the Small Magellanic Cloud (SMC). The 30 Doradus is a 
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unique, giant star formation complex in the LMC and is centered on a dense, massive 

cluster of newly formed stars. The level of star formation exhibited by the 30 Doradus 

region and the neighboring the LMC complex are the closest examples of starburst-type 

star formation (Walborn \& Blades 1997; Brandner et al. 2001; Maercker \& Burton 

2005). Furthermore, this nebula plays a key role in the understanding of HII regions 

(Scowen et al. 2009). Multi-frequency radio continuum surveys (Haynes et al. 1991) 

showed that there are filamentary magnetic fields in the LMC. The fields seem to be 

associated with the 30 Doradus and not with the main body of the LMC. Previous 

polarimetric observation and study about the 30 Doradus were presented by Nakajima et 

al. (2007). 

 

For the study of the magnetic field in the LMC, the separation of the Galactic 

foreground sources are essential. In this paper, we present the results of near-infrared 

(NIR) polarimetric observations of a larger region around 30 Doradus. Section 2 

describes the observations. Also in this section, data reduction processes, such like 

photometry and calculation of the Stokes parameters, are introduced. The study about 

photometry with different aperture radii and the comparing with previous data are 

mentioned to reduce the reliable data in Section 3. In Section 4, we discuss the methods 

for source classification to extract the Galactic foreground sources, such like Color-

magnitude diagram and proper motions. 



 

3 

 

 

2. OBSERVATIONS AND DATA REDUCTION 

 

2.1 Observations 

 

The observations were carried out from 2008 December 25 to 30 with NIR wide-field 

polarimeter SIRPOL on the Infrared Survey Facility (IRSF) 1.4 m telescope at the South 

African Astronomical Observatory. Using the infrared camera SIRIUS which has three 

1024 × 1024 HgCdTe infrared detector and provides simultaneous three-band images 

(Nagayama et al. 2003), we could obtain 5×9 regions in the LMC. We used near-infrared 

wavelengths to observe that regions; wavelengths are J (λ = 1.25μm), H (1.63 μm), and 

Ks (2.14μm) bands. SIRPOL enables us to obtain wide-field (7.7′ × 7.7′) polarimetric 

image with a scale of 0.45″ pixel-1. See Kandori et al. (2006) for the details of SIRPOL. 

We performed 20 second exposures at four wave-plate angles (0˚, 45˚, 22˚.5, and 67˚.5) 

and at 10 dithered positions for one set. One set observation was performed at each frame. 

The total integration time was 200 second per wave-plate angle. Overall seeing size 

during the observations was ~1″.3 at J band, but we experienced unstable seeing 

conditions during nights. We selected 3×3 regions (20′ⅹ20′), around 30 Doradus, and 

present our initial investigation. Those regions are described in Table 1 and Figure 1.  

   

2.2 Data Reduction 

 

We used IRAF (Image Reduction & Analysis Facility) software package to reduce the 

data, e.g, dark-field subtraction, flat-field correction, median sky subtraction, and frame 

registration (Kandori et al. 2006). For source detection and photometry on Stokes I 

images, we used the IRAF daophot package (Stetson 1987). We detected stars having 

peak intensity greater than 10σ above the local sky background. We measured the 

instrumental magnitudes of stars by aperture photometry. The pixel coordinates of the 

detected sources were matched to celestial coordinates of their counter parts in the Two 
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Micron All Sky Survey (2MASS) Point Source Catalogue. The magnitude and color of 

our photometry were transformed to the 2MASS system using:  

 

MAG2MASS = MAGIRSF + α1 × COLORIRSF + β1,                            (1) 

COLOR2MASS = α2 × COLORIRSF + β2,                                   (2) 

 

where MAGIRSF is the instrumental magnitude from the IRSF images and MAG2MASS is 

the magnitude from the 2MASS All Sky Point Source Catalogue. We calculated the 

Stokes parameters, I, Q, and U, the polarization degree, P, and the polarization position 

angle, θ, as below: 

 

I = (I0 + I22.5 + I45 + I67.5) / 2,                                            (3) 

Q = I0 – I45,                                                          (4) 

U = I22.5 – I67.5,                                                       (5) 

P○ = 
I

UQ 22 +
,                                             (6) 

θ = 
Q

U
arctan

2

1
.                                                    (7) 

Since the initial polarization degree, P○, is a positive quantity, the derived P○ values 

tend to be overestimated, especially for low signal-to-noise ratio (S/N) sources. To 

correct for the bias, we use the following equation to calculate the debiased polarization 

degree: 

 

P = 22 δ  PP ㅡ ,                                                  (8) 

where δP○ is the error in P○ (Wardle & Kronberg 1974). The polarization efficiencies 

of SIRPOL (95.5, 96.3, and 98.5% at J, H, and Ks bands, respectively) were used for 

correcting debiased polarization degree (Kandori et al. 2006).
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3. RESULTS 

 

3.1 Photometry with Aperture Radius of 4 Pixels 

 

In the photometry processes, most of the previous SIRPOL data have used an 

aperture radius of 4 pixels. But considering our insufficient exposure time, 200 second 

for each wave-plate angle, this size could be too small to obtain sufficient photons from 

the sources. In bad weather conditions, the variable seeing can produce systematic 

polarization patterns. 

Our photometry with aperture radius of 4 pixels and sky annulus of 10 pixels detected 

2669 sources in JHKs bands over the entire regions. In these sources, the sources which 

had P ≥ 3σP were considered and examined polarization result with the polarization 

vector map. The vector maps with an aperture radius of 4 pixels are represented in Figure 

2. As shown in this figure, each region do not seem to show correlation with each side of 

region. In other words, the nine regions seem to have systematic patterns about the 

polarized sources which are included in each region. 

 

3.2 Photometry with Aperture Radius of 8 and 12 Pixels 

 

While it is usual to use an aperture radius of 4 pixels, it is necessary to verify the 

results when the quality of images is worse than the usual. To verify our results, we 

performed the analysis again using larger aperture radius. We set aperture radius to 8 and 

12 pixels and sky annulus to 13 pixels, and executed photometry and polarimetry again. 

We investigated the relation between the aperture radius and the polarization results. We 

select the sources which are matched at each result for different aperture radii (i.e, the 

sources were included in the results by aperture radius of 4, 8, and 12 pixels.). 

 

Figure 3 represents the polarization degree ratios of the aperture radius of 4 and 8 

pixels to the aperture radius of 12 pixels. The ratio of 4 to 12 pixels has higher value than 
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the ratio of 8 to 12 pixels. This result implies that the photometry data of the aperture 

radius of 4 pixels can be significantly affected by the seeing variations during 

observations. Also we need to note that the polarization degrees become slightly higher 

as an aperture radius was increased. 

 

We also compared the polarization angles between the different aperture radii as 

shown in Figure 4. There are tight correlations between aperture radius of 8 pixels and 

aperture radius of 12 pixels, contrary to the ratio of 4 pixels to 12 pixels. This result 

means that polarization angles of aperture radius of 8 pixels are very reliable. Although 

the larger aperture makes higher photometric noise, we decide to use aperture radius of 8 

pixels for further discussions. 

 

From these processes, we dealt with data which set aperture radius to 8 pixels and 

derived polarization degree and angle of 2562 sources. But we considered meaningful 

stars with P ≥ 3σP. Numbers of selected stars of entire regions are 736, 784, and 427 stars 

at J, H, and Ks, respectively. Figures 5 shows polarization vector map with an aperture 

radius of 8 pixels. These maps show a different distribution from the maps with an 

aperture radius of 4 pixels. The maps whose set aperture radius to 8 pixels did not show 

discrete trend of polarization angles. The differences between aperture radius 4 and 8 

pixels imply that improper photometry environments can occur systematic errors in 

polarimetry. Figure 6 shows the distributions for polarization degrees and angles in nine 

fields with aperture radius of 8 pixels. 

 

3.3 Comparing with Previous Results 

 

To make sure our results, we compare our data with previous observations. Nakajima 

et al. (2007, hereafter N07) would be a standard for this verification in the central regions 

of the 30 Doradus. N07 observed the 30 Doradus field centered at (α, δ)2000 = (5h38m45s, -

69˚05′29″), but our 30 Doradus field (region n5 in Table 1.) is centered at (α, δ)2000 = 

(5h38m34.48s, -69˚06′02.2″). Because of this difference in the centers, we could not 
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compare both data exactly. In addition, our photometry in the 30 Doradus are limited by 

the nebula features, while N07 showed many photometry sources with long exposure 

data, i.e., total of 1480 second per wave-plate angle. 

 

The numbers of the matched sources in both data are 33, 36, and 7 at J, H, and Ks 

bands, respectively. With these sources, we compared polarization degree and angle 

(Figure 7). Figure 8 shows that N07 and our data have a similar tendency at this graph. 

 

 

4. DISCUSSION 

 

Source classification is important to understand properties of stars as well as to 

separate the Galactic foreground sources and the sources from those in the LMC. The 

Galactic foreground sources can contaminate polarimetry result by their intrinsic 

polarization or are arisen calibration error by the sources which did not produce 

polarization itself. In this section, we applied two methods to test the separation 

reliabilities. 

 

4.1 Color-Magnitude Diagram 

The typical classification method is to use color-magnitude diagrams (hereafter CM 

diagrams). We followed the classification of Nikolaev & Weinberg (2000) and used 

criteria (in Table 2 of Nikolaev & Weinberg 2000) to separate sources. They denoted that 

the Galactic disk dwarfs of spectral classes in the range from late F to early K were 

distributed over foreground of the LMC. However, they only used the 2MASS samples 

with mKs < 14 mag. Our photometry data are available to mKs < 16 mag which mostly 

belongs to group D in Nikolaev & Weinberg (2000). Total five populations of stars are 

classified. Kato et al. (2007) also used criteria of Nikolaev & Weinberg (2000), but did 

not classify group D. Figure 9 represents the five groups. These groups can be 

represented by stellar population around the 30 Doradus as follows: 

Group A: the main sequence; 
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Group EFG: the red-giant branch (RGB) and the early asymptotic giant  

branch (E-AGB); 

Group B: the Galactic foreground sources; 

Group I: Super giant and red clump; and 

Group JK: the asymptotic giant branch (AGB) stars. 

 

In these five groups, Group A and Group I can be confused to divide to the Galactic 

foreground and the main LMC sources. Group JK have dusty AGB stars which may have 

their own polarization by the shrouded dust (Parthasarathy & Jain 1993). The main focus 

is to compare Group B as the foreground sample and Group EFG which contain the main 

LMC stars. Because the classification of Nikolaev & Weinberg (2000) only used the 

2MASS sources with mKs < 14 mag, we extrapolate the boundaries of the criteria regions 

up to mKs < 16 mag and plot the histograms for the sources in Group B and Group EFG. 

Figure 10 shows data in these regions. Figures 11 and 12 show the distributions for 

polarization degrees and angles of both Group B and Group EFG. From these results, we 

cannot find any significant difference between Group B and Group EFG. We conclude 

that CM diagram is not proper separation method, because the vague boundary lines of 

the foreground group cannot separate the Galactic foreground sources from the main 

LMC sources precisely. 

 

4.2 Proper Motion 

 

Vieira et al. (2010) investigated the proper motion in the Magellanic Clouds in the 

Southern Proper Motion (SPM) program. They used the resulting catalog of 1.4 million 

objects to derive the mean absolute proper motions of the LMC and the SMC. We used 

this catalog and examined proper motions to separate the foreground sources which are 

contained in our observed regions. 

 

Total 805 sources were matched with SPM sources at JHKs bands. Unfortunately, the 

sources which are detected in our nine fields have proper motions with significant errors. 
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Vieira et al. (2010) also discarded an area of high stellar density, at 71˚ ≤ α ≤ 76˚ and -68˚ 

≤ δ ≤ -71˚, with CCD data close to the LMC center. We verified that the sources in our 

nine fields appeared some relations between proper motion and polarization data. To 

avoid uncertainty of data, we used data which had proper motion μ > 3σμ to select the 

Galactic foreground stars. μ is calculated as below. 

 

μ  = ( ) 2
δ

2
α μδμ ㅡcos                                                (9) 

 

For the sources which have proper motion for μ < 3σμ and P ≥ 3σP, we examined their 

distributions for polarization degrees and angles to compare with the Galactic foreground 

sources. The sources which have μ > 3σμ have the random distribution of polarization 

angle at each band. The sources which have μ < 3σμ show the similar distribution of 

polarization angle at each band. We present these results in Figures 13~15. From these 

results, we can select the Galactic foreground stars in our field and suggest that 

polarization properties of stars can be related to their proper motions. 

 

 

5. SUMMARY 

 

We conducted investigation to solve systematical problem. Using different aperture 

radii, we examined the correlation between aperture radius and polarimetry result. 

Consequently we concluded to use aperture radius of 8 pixels with annulus of 13 pixels 

for photometry and polarimetry.  

 

Considering insufficient exposure time, 200 second for each wave-plate angle, and 

unstable seeing condition, our aperture radius to perform photometry and polarimetry is 

reliable to set 2~3 times than usual aperture radius. We used the comparison data to make 

sure our results. Comparing with the sources of N07, we found that there are no 

significant differences in the polarimetry data of our sources. 
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We applied methods to select the Galactic foreground sources which can contaminate 

polarimetry result by their intrinsic polarization or arise calibration error by the sources 

which did not produce polarization itself. Using CM diagram, we selected the group 

which contained the foreground sources. But in the distributions for polarization degrees 

and angles, it did not have significant differences comparing with the main LMC sources. 

We also selected the Galactic foreground sources to use proper motion. The sources 

which are located in the foreground had significant value for proper motion, contrary to 

the main LMC sources. Although proper motion data had significant errors, we can 

separate the Galactic foreground sources from the main LMC sources. They showed the 

different distributions for polarization degrees and angles comparing with the main LMC 

sources. 
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Fig. 1. The survey area of our observed 5×9 regions(yellow box) and around 30 Doradus 

regions(red box). This optical image offered by Mr. Kamiya. 

 

Table 1. Observation log 

Date Field name αJ2000 δJ2000 Seeing in J band[″] 

12/30/2008 n1 05 39 47.92 -68 59 09.9 1.2 

 n2 05 38 33.53 -68 59 07.7 1.3 

12/25/2008 n3 05 37 19.27 -68 59 03.9 1.3 

 n4 05 37 19.86 -69 06 03.3 1.4 

 n5 05 38 34.48 -69 06 02.2 1.4 

 n6 05 39 48.78 -69 06 02.6 1.3 

 n7 05 39 48.17 -69 12 38.0 1.3 

 n8 05 38 32.91 -69 12 34.0 1.2 

 n9 05 37 17.79 -69 12 32.4 1.3 
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Fig. 2. Intensity images and polarization vectors (orange lines) of the polarized sources 

with P ≥ 3σP for the H band with aperture radius of 4 pixels. The length of vectors 

indicates the polarization degree (%). 
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Fig. 3. (Top) Correlation plots of polarization degrees for different aperture radii 

(Aperture=4 vs. Aperture=8 pixels) less than 10% for the H band. (Middle) Correlation 

plots of polarization degrees for different aperture radii (Aperture=8 vs. Aperture=12 

pixels) less than 10% for the H band. (Bottom) Correlation plots of the ratios of 

polarization degrees of aperture=4 to aperture=12 pixels and aperture=8 to aperture=12 

pixels for the H band. The red plots indicate the ratios of aperture=4 to aperture=12 

pixels and the blue plots indicate the ratios of aperture=8 to aperture=12 pixels. 
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Fig. 4. (Top) Correlation plots of polarization angles for different aperture radii 

(Aperture=4 vs. Aperture=8 pixels) between the range 30˚and 150˚ for the H band. 

(Middle) Correlation plots of polarization angles for different aperture radii (Aperture=8 

vs. Aperture=12 pixels) between the range 30˚ and 150˚ for the H band. (Bottom) 

Correlation plots of the ratios of polarization angles of aperture=4 to aperture=12 pixels 

and aperture=8 to aperture=12 pixels for the H band. The red plots indicate the ratios of 

aperture=4 to aperture=12 pixels and the blue plots indicate the ratios of aperture=8 to 

aperture=12 pixels. 
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Fig. 5. Intensity images and polarization vectors (orange lines) of the polarized sources 

with P ≥ 3σP for the H band with aperture radius of 8 pixels. The length of vectors 

indicates the polarization degree (%).  
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Fig. 6. (a) Histograms of polarization degree of the sources in nine fields with P ≥ 3σP 

for the J, H, Ks bands. (b) Histograms of polarization angle of the sources in nine fields 

with P ≥ 3σP for the the J, H, Ks bands. 
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Fig. 7. Correlation graph of both matched data at H band. Polarization degree (left) and 

angle (right) are represented.  
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Fig. 8. Histogram of polarization angle of both matched data at H band. The dashed line 

indicates sources of N07 and solid line means our sources. 
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Fig. 9. Color-magnitude (J-Ks vs. Ks) diagram for our sources. The each box means that 

Group A (orange box), Group EFG (blue box), Group B (red box), Group I (green box), 

and Group JK (violet box).  
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Fig. 10. Color-magnitude diagram for Group B and Group EFG. The sources are 

extrapolated to the boundaries. 
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Fig. 11. (a) Histograms of polarization degree of the sources which are classified to the 

Group B for the J, H, and Ks bands. (b) Histograms of polarization degree of the sources 

which are classified to the Group EFG and P ≥ 3σP for the J, H, and Ks bands.  
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Fig. 12. (a) Histograms of polarization angle of the sources which are classified to the 

Group B for the J, H, and Ks bands. (b) Histograms of polarization angle of the sources 

which are classified to the Group EFG and P ≥ 3σP for the J, H, and Ks bands. 
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Fig. 13. (a) Plots of P and proper motion of all matched with SPM sources for the J, H, 

and Ks bands. (b) Plots of P and proper motion of μ > 3σμ for the J, H, and Ks bands. 
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Fig. 14. (a) Histograms of polarization degree of the sources which have their proper 

motion μ > 3σμ for the J, H, and Ks bands. (b) Histograms of polarization degree of the 

sources which have their proper motion μ < 3σμ and P ≥ 3σP for the J, H, and Ks bands. 
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Fig. 15. (a) Histograms of polarization angle of the sources which have their proper 

motion μ > 3σμ for the J, H, and Ks bands. (b) Histograms of polarization angle of the 

sources which have their proper motion μ < 3σμ and P ≥ 3σP for the J, H, and Ks bands. 
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국 문 초 록 

 

대 마젤란 성운 (LMC) 내에 위치한 30 Doradus 주변 20′ x 20′ 의 지역을 

IRSF의 1.4 m 망원경을 이용하여 근적외선 파장대로 관측을 하였다. SIRIUS 

편광기 (SIRPOL)을 사용하여 J, H, Ks 영역의 편광 자료를 얻었고, 별들의 

Stokes 변수를 측정하여 편광 정도와 편광 각도를 계산하였다. 측광 구경을 

달리 하여 편광 자료에 대한 가능한 오류들을 측정하였다. 자료의 안정성에 

문제를 야기하는 우리 은하 내에 위치한 별들을 구분하기 위하여 별의 색등

급도(color-magnitude diagram)와 고유운동을 이용하였다. 하지만 색등급도에서

는 LMC 내에 위치한 별들과 큰 차이를 확인하지 못하여 고유운동을 통한 방

법이 더 신빙성이 있다는 결론을 얻었다. 이러한 자료 분석 방법들은 LMC의 

더 넓은 영역의 연구에 적용 될 것이다. 
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많은 시간과 노력이 필요하겠지만, 교수님께서 충고해 주시고 보여 주셨던 것

들을 기억하며 꾸준히 앞으로 나아가겠습니다. 그리고 비록 많은 가르침을 받

을 기회는 없었지만 참된 학자와 교육자로서 크나큰 모범이 되어 주신 김갑

성 교수님, 김관혁 교수님, 김상준 교수님, 김성수 교수님, 문용재 교수님, 이

동훈 교수님, 장민환 교수님, 진호 교수님, 최광선 교수님께도 감사를 드립니

다. 

이번 논문을 완성하기까지 큰 도움을 주셨던 천문연구원의 최민호 박사님

과 서울대학교의 박원기 박사님, 그리고 서행자 박사님께도 진심으로 감사를 

드립니다. 기초가 많이 부족한 저를 최선을 다해 도와주셨던 은혜를 잊지 않

고, 앞으로 더욱 정진하여 큰 과학자가 되는 것으로 보답하겠습니다. 

제가 지금까지 엇나가지 않고 이 길을 계속 갈 수 있었던 것은 제 주변의 

좋은 친구들과 연구실 및 대학원의 선후배님들 덕분이었습니다. 연구실의 선

배이자 친구로 저에게 많은 도움과 본보기가 되어 주었던 김상혁과 오희영에

게 감사를 전합니다. 또한 같은 시간과 어려움을 같이 극복해 나갔던 김은빈 

누나께도 감사를 전합니다. 심적으로 힘든 시기가 많이 있었지만 그 시기를 

이겨나갈 수 있게 도와준 전제헌, 이대우, 서용명에게 진심으로 감사를 표합

니다. 이들뿐만 아니라 우주과학과에 입학해서 지금까지 오랜 시간을 함께 해

온 03 동기들이 아니었다면 지금의 나는 없었을 것입니다. 또한 저의 멘토로

서 천문학자의 길을 지켜나갈 수 있게 해주신 임규희 선배님께도 진심으로 

감사를 드립니다. 같은 연구실은 아니지만 연구와 공부에 대해서 많은 조언을 

해주신 이재형 선배, 서정준 선배, 김현남 선배, 이용석 선배를 비롯한 분들

께도 감사를 드립니다.  
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그리고 10년이 넘는 세월을, 비록 같은 공간에서는 아니지만 꾸준히 함께 

있어왔던 나의 오랜 친구 박성욱, 오대로 에게도 감사를 전합니다.  

마지막으로 지금까지 못난 자식을 헤아릴 수 없는 사랑과 믿음으로 감싸주

시고 키워주셨던 어머니, 아버지께 말로 표현할 수 없는 사랑과 감사를 드립

니다. 
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