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ABSTRACT  

GMTNIRS, the Giant Magellan Telescope near-infrared spectrograph, is a first-generation instrument for the GMT that 
will provide detailed spectroscopic information about young stellar objects, exoplanets, and cool and/or obscured stars.  
The optical and mechanical design GMTNIRS presented at a conceptual design review in October 2011 covered all 
accessible parts of the spectrum from 1.12 to 5.3 microns at R=50,000 (1.12-2.5 microns) and R=100,000 (3-5.3 
microns).  GMTNIRS uses the GMT adaptive-optics system and has a single 85 milliarcsecond slit.  The instrument 
includes five separate spectrographs for the different atmospheric windows.  By use of dichroics that divide the incident  
light between five separate spectrographs, it observes its entire spectral grasp in a single exposure while having only one 
cryogenic moving part, a rotating pupil stop.   
 
Large, highly accurate silicon immersion gratings are critical to GMTNIRS, since they both permit a design within the 
allowable instrument volume and enable continuous wavelength coverage on existing detectors.  We describe the effort 
during the preliminary design phase to refine the design of the spectrograph to meet the science goals while minimizing 
the cost and risk involved in the grating production.  We discuss different design options for the individual spectrographs 
at R=50,000, 67,000, 75,000, and 100,000 and their impact on science return.  
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1. INTRODUCTION  
GMTNIRS, the Giant Magellan Telescope Near-Infrared Spectrograph, is one of the first-generation instruments for the 
GMT1.  The instrument development is a collaboration between the University of Texas at Austin, the Korea Astronomy 
and Space Science Institute and Kyung Hee University.  GMTNIRS completed a conceptual design in 2011 and is 
currently beginning its preliminary design phase by making critical design decisions to permit fabrication of the Si 
immersion gratings, the highest risk and longest lead-time components of the instrument.  We have discussed the 
development of the instrument design in two previous papers.2,3  

1.1 Instrument and project description 

GMTNIRS is a single-object infrared spectrograph with high spectral resolution and a large spectral grasp.  It exploits 
the laser guide star adaptive optics system of the GMT4 to maximize its sensitivity at 3-5 μm and to keep the instrument 
size modest. Table 1 lists the functional features of the point design developed during the conceptual design phase.  The 
instrument observes its entire 1-5 μm spectral range simultaneously through a single slit with five separate spectrographs 
covering the individual atmospheric windows.  The broad coverage enables efficient observations, encourages 
serendipitous detections, simplifies the optomechanical design and data taking and analysis software, and leads to a more 
stable instrument. During the next development phase, we will fix the science requirements and use them to derive a set 
of technical specifications.  We will produce the Si immersion gratings and do a detailed design and evaluation of the 
instrument. 
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GMTNIRS     Spectral grasp (simultaneous)          1.15-5.3 μm  Slit width (arcsec), pixel sampling  0.080, 4.0 Slit length (arcsec)  1.30 Resolving power (1.15-2.5 μm)  λ/Δλ = 50,000  Resolving power (3.0-5.3 μm)  λ/Δλ = 60,000-100,000 

Table 1. Basic characteristics of GMTNIRS. 

 

 

 

 

 

 

 

1.2 Science goals 

GMTNIRS’ grasp and sensitivity in a wavelength range only barely explored at high resolution up to now give it a 
tremendous discovery space across many different science fields.  Figure 1 illustrates the comparative sensitivity of 
GMTNIRS on GMT and the current incarnation of CRIRES on the VLT.  The per resolution element sensitivity 
improvement results from a combination of the larger aperture, detector improvements since the construction of 
CRIRES, and somewhat better optical efficiency.  The biggest improvement is in spectral coverage which, due to the 
smaller instantaneous grasp and gaps in coverage for CRIRES, is about a factor of 100 (note, however, the near-term 
plans to improve the coverage of CRIRES by an order of magnitude by adding a cross-disperser)5. 

 
Figure 1. Sensitivity comparison for GMTNIRS at GMT and CRIRES on the VLT for S/N=100 in one hour.  The green 
lines together represent a single exposure with GMTNIRS.  The red dashes represent individual exposures with the current 
version of CRIRES (prior to the addition of a cross-disperser)5 needed to cover the same range.   
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One of the most exciting fields where GMTNIRS can play a leading role is the direct detection of exoplanet spectra.  
Pioneers in this field on 8m telescopes have used high-resolution spectroscopy to detect transiting hot Jupiters.6,7  They 
have also phase-correlated spectra of planets in non-transiting systems to obtain precise planetary masses without 
inclination ambiguities.8,9,10  With GMTNIRS, data of this sort will provide not only the basic planetary parameters but 
also significant information about the physics and chemistry of the planetary atmospheres in systems not approachable 
with low-resolution spectroscopy. 

GMTNIRS will probe the physics of young stellar objects and their disks across the mass spectrum from their earliest 
phases through their maturity.  The short wavelength channels will let us measure effective temperatures, surface 
gravities, rotation velocities, and magnetic fields from the photospheres, as well as accretion rates and the flux 
distribution from the inner disks.  The long wavelength channels grant access to the molecular emission line spectrum of 
the protostellar disks where the velocity-resolved multi-line spectra will provide us with spatially resolved information 
about excitation and chemistry.  GMTNIRS will have sufficient sensitivity to study very young sources down to well 
below the hydrogen burning limit and to detect lines from the nascent photospheres of highly embedded, higher-mass 
objects. 

Studies of stellar evolution and the star formation history of the Galaxy will also benefit from the advanced capabilities 
of GMTNIRS.  Use of the near-IR allows us to study objects throughout the galaxy by penetrating through the 
interstellar extinction.  For the coolest stars, the much cleaner near-IR spectra facilitate quantitative measures of stellar 
abundances not possible at visible wavelengths.11   Molecular lines probe the variation in isotopic abundances for C,N,O 
and other key species. 
 
GMTNIRS also has a significant role to play in interstellar medium studies; of jets from protostars, shocks from 
supernova remnants and other sources, dense gas responding to UV illumination from nearby stars, and molecular 
absorption along high column density lines-of-sight through the Galaxy.  The GMT Science Advisory Group will 
consider these science areas in formulating the science requirements that underlie the technical specifications of the 
instrument. 
 

2. OPTICS AND OPTICAL DESIGN 
2.1 Immersion gratings  

Silicon immersion echelle gratings are the key optical element in the GMTNIRS design.  Collimated light passes through 
a flat entrance surface and strikes the blazed grating inside the monolithic Si prism (Figure 2).  Since Si has a refractive 
index of 3.4 in the IR, the wavelength inside the medium is 3.4 times smaller than the vacuum wavelength and the 
diffraction-limited resolving power is 3.4 times greater than that of a front-surface reflection grating of the same physical 
size.  Using microlithography, we can create much coarser grooves than by mechanical ruling. The coarser grooves make 
it possible to operate in high order where we can match the length of the free spectral range to the detector size at our 
desired pixel sampling.    After a lengthy development process, we can now produce Si immersion gratings of sufficient 
size and accuracy to meet the needs of GMTNIRS.12-15  Model CA1, the immersion grating used in our existing 
instrument, IGRINS, has a peak to valley wavefront error of 0.16 waves at 633 nm, measured from the front surface.13  
This means that the error in immersion is less than λ/4 down to below the short wavelength end of the H band.  The 
measured efficiency at the peak of the blaze, including the losses at the front surface, is ~75%.13 
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fairly loosely controlled.  The detectors and immersion gratings, which require control at a level below 100mK, are 
thermally isolated from their surroundings and then each have their own control loops.  

3.4 Consequences 

The design philosophy for GMTNIRS runs counter to the usual practice in large facility instruments.  GMTNIRS has a 
fixed slit that is common to all wavelength bands and, apart from the rotating pupil stop, no moving parts.  We can 
change the orientation of the slit on the sky by rotating the instrument platform. We can only change the slit width by 
warming up the instrument and replacing the reflective slit plate.  We do not plan to do this after the instrument and the 
adaptive optics system have been fully commissioned.  By covering all accessible IR wavelengths at once, there is no 
need for changes in grating angles or blocking filters.  With the choice of an adaptive optics feed, the tradeoff between 
throughput and slit width is not necessary. 

There are significant advantages to the current design.  The enormous spectral grasp at high resolution greatly increases 
the observing speed for projects that require a panchromatic view of an object’s spectrum.  The fixed format makes 
queue observing much easier since there are no configuration changes between observations and since the same 
calibration will serve for most programs.  Most importantly, the fixed format makes it possible to design and build a data 
reduction pipeline that will produce science-quality results with almost no human intervention.  For cross-dispersed 
echelle spectroscopy, where data reduction is often a significant chore, this feature will reduce barriers to entry and result 
in a broader user community.  The fixed format has the further advantage of providing long-term stability for projects 
that want to examine source variability or to carry out surveys over an extended period. 

4. PLANS 
GMTNIRS is currently beginning its preliminary design phase.  Because of the critical risk that the immersion gratings 
represent to the project and because of the long lead time for these components, the production of the immersion grating 
surfaces will occur during this phase.  Over the coming year, we will finalize the science requirements for the instrument 
and then arrive at a set of performance requirements by trading the science capabilities against the costs and risks, 
principally those related to the manufacture of the gratings.  This exercise will lead to final specifications for the gratings 
that will allow us to proceed with procurement of material for their production.  At the end of this grating development 
phase, we will begin the detailed optomechanical design.  With the thorough work from the conceptual design and the  
heritage of IGRINS, we expect to be able to complete the preliminary design phase of the project fairly rapidly 
thereafter. 

We thank our many colleagues who contributed to the GMTNIRS conceptual design. The design of GMTNIRS is 
supported by the Giant Magellan Telescope Organization with additional support from the University of Texas at Austin 
and the Korea Astronomy and Space Science Institute.  Development of the immersion gratings to be used in GMTNIRS 
has been supported by NASA through grant NNX10AC68G and NSF ATI grant NSF0705058 to the University of Texas 
at Austin. 
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