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ABSTRACT 
We present a preliminary conceptual optical design for GMACS, a wide field, multi-object, optical spectrograph 
currently being developed for the Giant Magellan Telescope (GMT). We include details of the optical design 
requirements derived from the instrument scientific and technical objectives and demonstrate how these requirements are 
met by the current design. Detector specifications, field acquisition/alignment optics, and optical considerations for the 
active flexure control system are also discussed. 
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1 INTRODUCTION 
The Giant Magellan Telescope Multi-object Astronomical and Cosmological Spectrograph (GMACS) is a first light 
instrument for the Giant Magellan Telescope (GMT). It will provide wide field, multi-object, moderate resolution 
spectroscopy of faint targets, currently only known from imaging observations. The new optical design concept for the 
GMACS double-beam optical spectrograph consists of a common pan-chromatic collimator, a dichroic beam-splitter, a 
set of volume-phase holographic transmission gratings (VPHGs) as the dispersion elements, a set of passband filters for 
both direct imaging and spectroscopic waveband selection, feeding twin red and blue optimized f/2.2 CCD cameras. 

The collimator generates an image of the telescope entrance pupil, located at its primary (sparse aperture) mirror, onto 
the optical center of the VPHG. The pupil aberrations must be well corrected due to the strong astigmatism and field 
curvature caused by the telescope to avoid overloading the corrections needed by the cameras. The convex radius of 
curvature of the telescope focal plane is ~2200mm formed at f/8.16 giving an image diameter of ~450 mm for a 7.5 
arcminute field of view (FoV). 

The proposed optical designs described in this paper are analyzed for both direct imaging and low and high resolution 
spectroscopy for the most demanding blue arm.  

A previous 4-shooter, ultra-wide field concept for GMACS was developed in 2011 which employed a tent mirror placed 
after a field lens to divide the incident focal plane into four separate segments to avoid physical interference between the 
multiple fly’s eye collimators1.  These four fold mirrors at the GMT focal plane redirected a 9 arcminute × 18 arcminute 
FoV to four individual arms that each comprised a double-beam spectrograph (that is, each arm saw a 4.5 × 9 arcminute 
off-axis field). However, despite the good performance achieved with this off-axis concept, the complexity and cost 
necessitated a de-scope to a single on-axis double-beam version. Nevertheless, several optomechanical concepts were 
migrated to the new design. 

                                                 
* lschmidt@physics.tamu.edu; phone 1-979-845-4401; http://instrumentation.tamu.edu 

Ground-based and Airborne Instrumentation for Astronomy VI, edited by Christopher J. Evans, Luc Simard, Hideki Takami
Proc. of SPIE Vol. 9908, 9908A4 · © 2016 SPIE · CCC code: 0277-786X/16/$18 · doi: 10.1117/12.2233543

Proc. of SPIE Vol. 9908  9908A4-1

Downloaded From: http://spiedigitallibrary.org/ on 01/16/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



 

 

We have chosen to begin the study of the GMACS optical design with the blue camera due to the challenging 
requirement for high throughput in the UV-blue region which aims for significant throughput down to 320nm. The 
necessity for large lenses coupled with the requirement for high internal glass transmittance limits glass choices from 
optical suppliers. The lessons learned in the blue camera design will be used in the design of the red camera that will be 
studied during the conceptual design phase. Additional GMACS design information can be found in the overview (9908-
79)2 and optomechanical (9908-375)3 papers, also at this conference. 

2 REQUIREMENTS 
Through collaboration with the Giant Magellan Telescope Organization (GMTO), its partners and other representatives 
from the scientific community, a set of principal functional requirements has been developed (Table 1). A 2014 GMACS 
community workshop included more than 50 participants with interests in a broad range of research topics including (1) 
stars, star-formation, and planets; (2) resolved galaxies (including dwarf galaxies) and near-field cosmology; and (3) 
distant galaxies (including reionization and first light science). 

Additional performance goals and practical constraints also guide the design. For example, throughput is an important 
design driver.  The throughput requirements and goals for GMACS are: 

Requirement: 350-950nm, peak transmission ≥40%, no worse than 25% of peak at any wavelength. 320-
350nm and 950-1040nm, best effort, no design choices to preclude transmission.   

Goal: 320-1000nm with peak transmission ≥40%, no worse than 25% of peak at any wavelength. Transmission 
beyond 1000nm, best effort, no design choices to preclude transmission to red sensitivity limit of the CCD. 

These throughput requirements take into consideration the telescope throughput, grating efficiency and detector quantum 
efficiency. However, in this paper we discuss the throughput considering only the GMACS optical system. 

GMACS must also interface with MANIFEST, the GMT fiber positioner4. GMACS must have sufficient optical 
performance to take advantage of the reduced slit width of the fiber output that will allow higher resolution observations 
with the combined GMACS-MANIFEST system.  

GMACS is designed for the Direct Gregorian Narrow-Field (DGNF) configuration of the GMT. The instrument mounts 
at the focus of the primary/secondary mirror system and does not include an atmospheric dispersion compensator, wide 
field corrector or any fold mirrors.  Uncorrected image quality places an upper limit of ~5 arcminutes for the radius of 
the field of view. 

Table 1 GMACS Principal Functional Parameters 

Parameter Requirement Goal 

Field of View 30 arcmin sq. 50 arcmin sq. 

Wavelength 
Coverage 350-950nm 320-1000nm 

Spectral Resolution Blue: 1000-6000, Red 1000-6000 Blue: 1000-6000, Red 1000-6000 

Image Quality 80% EE at 0.30 arcsec 80% EE at 0.15 arcsec 

Spectral Stability 0.3 spectral resolution elements/hour 0.1 spectral resolution 
elements/hour 

Number of Gratings 2 ≥2 

Slit Mask Exchange 12 ≥20 
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3 OPTICAL DESIGN  

3.1 Design Methodology  

Prior to the detailed optical design process, a functional parameter study was performed. Using the stated requirements 
and the optical design of the GMT a range of possible spectrograph parameters were determined.  This included the 
number of pixels (15µm) along a slit that covers the full diameter of the FoV, different aspect ratios for the detector, and 
requirements for collimator focal length, pupil diameter and camera focal length. The camera FoV required to capture a 
continuous spectrum at the desired resolutions was also determined. Difficulties in designing and building very fast 
cameras (~f/1) or wide FoV cameras, as well as physical constraints on pupil (and therefore grating) size determined the 
starting point for the design presented here.  

The design methodology used in this paper was based on independent optimization of the collimator and camera, 
described below. Once the basic optical parameters (effective focal length, waveband coverage, FoV) had been 
established for the collimator optical system, early variants of the system were optimized using ZemaxTM. Three flat 
windows which represent the dichroic, VPHG and filter are included in the prescription of the collimator with the 
location of the first and second determined by the space required for their rotation.  A paraxial surface was then inserted 
to simulate the camera. 

For the camera, the stop diameter and position of the system are given by the exit pupil properties of the collimator. The 
pupil space is chosen to permit space for the dichroic and VPHG. The camera FoV is based on the grating dispersion and 
wavelength coverage and ultimately limited by the chosen format of the detector.  

Finally, both the collimator and camera are brought together into the same ZemaxTM prescription to allow fine tuning of 
the optimization taking into account different grating configurations. 

 
     Figure 1. GMACS optical layout.  Light from the telescope enters from the left.  A beamsplitter separates the light 

into red (transmitted) and blue (reflected) channels.  The red camera is included to convey the overall design concept 
while this paper focuses on the development of the broadband collimator and blue camera.      

3.2 System Overview 

The principal functional parameters of the system are summarized in the table below: 
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Table 2. Current system parameters for the collimator and UV-blue camera. 

Basic System Parameters 
On axis telescope focal plane to CCD image plane 3920mm 

Focal lengths 
System: 5946.3mm 
Collimator:  2200mm 
UV-Blue Camera: 592mm 

System working f-number 2.19 
Telescope primary mirror (entrance pupil 
diameter) 25448 mm 

Collimator exit pupil diameter 270 mm 

Wavelength coverage (requirement) 340 – 580nm 

Detector Format 2-by-3 4k², 15μm (8k-by-12k) pixel CCD (or 122.8 by 
184.3mm) with long dimension in the dispersion direction. 

Camera Field of view  (diameter) 14° 
Lens system: 

Number of elements 

Collimator: 6 elements (2 singlets and 2 doublets) 
UV-Blue Camera:  10 elements (1 quadruplet, 1 triplet 
and 3 singlets) 
1 Dichroic and 3 VPHG (low, med, high resolution) 

Glasses Fused Silica, FPL51, BSM51Y, BAL35Y, PSK3, CaF2, 
FK54 

Aspheric surfaces Collimator: 1 
UV-Blue Camera: 3 

Coatings 

Quarter wave of MgF2 coating for lenses and silver for 
telescope primary and secondary mirror. The influence on 
the throughput was mainly a function of the internal 
absorption of the glasses. No detailed spectral and angular 
transmittance was included in the beamsplitter and the 
grating efficiency was considered perfect.   Future 
calculations will update mirror and lens coatings, and 
grating throughput to match expected performance. 

Packaging: 

BFD (last camera surface to CCD) ≈ 34mm (center) 
≈ 20mm (edge) 

Maximum lens diameter ≈ 580mm (Fused Silica Field Lens) 

Lens Weight 270 kg, based on the volume and density of ZemaxTM data 
base glasses properties 

 

In the sections below we describe the subsystems of the GMACS blue arm optical system which comprises the 
collimator and camera. 

3.3 Collimator 

The current design of the collimator consists of four elements: a silica field lens immediately behind the telescope focus; 
two doublets and a singlet, which reimage the telescope aperture onto the central plane of the VPHG. The collimator 
produces a 270mm diameter exit pupil approximately 520mm beyond the vertex of the last lens.  
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Table 3. Sensor Parameters 

Unit Sensor 

Sensor  CCD type 

Number of pixels (horizontal x vertical) 4096 x 4096 

Sensor Size (horizontal x vertical) 61.44 mm x 61.44 mm 

Full diagonal 86.89 mm 

Pixel pitch (horizontal x vertical) 15 µm x 15 µm 

Sensor Assembly 

CCD mosaic 2-by-3 

Number of pixels (horizontal x vertical) 12288 x 8192 

Sensor size (horizontal x vertical) 184.32 x 122.88mm 

3.6 Beamsplitter & Filters 

The beamsplitter is fused silica and will have a multi-layer dichroic coating on the first surface and anti-reflection 
coating on the second surface.  A final determination for the split wavelength has not been made yet, but the nominal 
value is 557nm, the location of a strong atmospheric emission line.  A final determination will be made considering 
observationally important spectral lines as well as practical constraints related to balancing the total spectrum between 
the two arms. 

Order sorting filters are shown directly after the VPHG’s in each arm.  The bandpasses and number of filters will be 
determined as the design progresses.  We are considering alternate locations, either fixed directly after the beamsplitter, 
or in front of the first element of the cameras.  This will reduce the size of the filters and simplifies the mechanism for 
rotating and exchanging gratings. 

3.7  VPH Gratings  

The GMACS dispersive optics will be transmission Volume-Phase Holographic (VPH) Gratings.  The spectral resolution 
requirement of 1000-6000 in both red and blue arms implies gratings with 660-2800 lines mm-1 for the blue arm and 
400-2000 lines mm-1 in the red arm. The spectrograph will initially have three interchangeable gratings for each arm to 
accommodate both the lower resolution modes in which it will be possible to record complete spectra across the whole 
wavelength range of the instrument (350-950nm) in a single image as well as high resolution modes in which the 
simultaneous wavelength coverage will be sacrificed for higher resolution.  The combination of adjustable collimator-
camera angle and grating tilt will allow GMACS to “scan” across the entire spectral range in multiple snapshots. 

Preliminary feasibility studies have been carried out to determine potential grating designs. The primary concerns are 
size, line density and grating efficiency.  The required size is close to the upper limit of current manufacturing 
capabilities.  The pupil sets the grating dimension in the spatial direction.  The spectral dimension is set by the pupil size 
and the grating rotation required to satisfy the Bragg condition.  For high resolutions this angle will approach 45° and 
elongate the required grating by a factor of √2. Fortunately, the method of producing the interference fringes used to 
generate the grating results in an elongated recording area, so that the diameter of the collimated laser beams used to 
record the fringes need only be as large as the smaller dimension (C. Clemens, private communication). 

Line densities between 400 and 3000 lines mm-1 are well within the range of manufacturability and simulations of 
expected grating efficiencies predict excellent performance across the desired wavelength range.  Two example grating 
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efficiencies are shown in Figure 5, generated during the previous conceptual design study.  At this time we do not 
anticipate a need to generate the large gratings in multiple stepped exposures. 

 

      
     Figure 5. (Left) 1325 lines mm-1 blue grating (R~2300) with parameters as shown.  The blue curve shows theoretical 

efficiency for 18 degree operating angle, and the red curve shows likely realized efficiency after surface and other 
grating losses. (Right) 820 lines mm-1 red grating (R~2300) with parameters as shown.  The blue curve shows 
theoretical efficiency for 18 degree operating angle, and the red curve shows likely realized efficiency after surface 
and other grating losses. 

4 GMACS OPERATION MODES 

4.1 Imaging Mode 

The GMACS image mode can be accomplished either through removal of the grating from the optical path, or 
potentially rotating the grating normal to the optical axis.  The second option may be useful in determining target 
alignment with the slit mask. The basic parameters are summarized in the table below. 

Table 4. Current blue camera imaging performance. 

Optical performance: 
Full field of view 7.5 arcmin diameter 
Image size 122mm diameter 
Transmission ~46% across full field  
Relative illumination (vignetting) 100% (no vignetting) 
Encircled energy RMS diameter ~43µm @ 7.5arcmin FoV 
Distortion < 1 % 
Field curvature <  0.7mm 
Plate Scale 3.47 arcsec/mm 

 
In spite of the relatively high field curvature and the longitudinal color, the effects in the spectroscopic mode may be 
mitigated by tilting the detector through a suitable mechanism determined by optical simulations. 
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We note that the dV curves for the selected glasses fall to nearly zero towards the short wavelength end of the band. 
Although the curves are falling in more or less constant proportion with roughly matching dRPD properties the 
dispersive strengths of the individual glasses are increasing rapidly. The consequence of this is that colour correction 
into the UV becomes increasingly problematic. This will be explored as the optical design proceeds. The dRPD method 
briefly described above was used as a guide in this work for the determination of the best combination for the collimator 
and camera glasses to avoid chromatic effects.  

6 AUXILIARY SYSTEMS 

6.1 Guide and Acquisition Cameras 

In order to position target objects on their respective slits, a guide and acquisition system will be necessary.  This system 
will consist of cameras placed at the edge of the spectrograph mask, each having approximately a 1 arcminute FoV.  
Three of the cameras will be fixed and a fourth camera with a smaller FoV will be capable of moving around the 
spectrograph field under the mask to confirm target object placement on the slits.  The curved focal plane and lack of a 
wide field corrector will require a small off-axis corrector for each fixed acquisition camera.  This system will be 
valuable during the commissioning of GMACS, and as errors in telescope pointing and telescope-instrument flexure are 
better understood we expect reduced need for the movable camera. The acquisition cameras will likely be doublet or 
triplet lenses and are in very early stages of design.  The location of the cameras is shown in      Figure 16.  

 
     Figure 16. Top down view of the slit mask location, which also shows four off-axis guide and acquisition cameras. 

6.2 Flexure Compensation 

GMACS is mounted at the Gregorian focus position of the GMT and therefore experiences a constantly changing 
orientation as the telescope tracks an object across the sky. In order to meet the requirement for spectral stability of 0.3 
spectral resolution elements per hour, the gravity-induced flexure of the instrument must be tracked and compensated.  
Eventual integration with MANIFEST and the resulting smaller slit sizes will require even stricter flexure compensation 
requirements. The reconfigurable nature of GMACS (many possible camera-collimator angles) will make a look-up table 
based compensation system intractable.  Therefore we plan to develop a closed-loop system that will track the motion of 
set reference points within the instrument. One such system could use lasers and quad-cells placed to measure relative 
motion between fiducial points7,8,9. The current concept mounts each camera within a hexapod which will allow a full six 
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degrees of freedom for correction at the focal plane. A robust tolerance analysis will be critical in defining the 
performance requirements of the flexure compensation system.  

6.3 MANIFEST 

Integration with MANIFEST will increase the multiplexing capabilities of GMACS and extend its FoV to the full GMT 
20 arcminute diameter field.  We have investigated several possible locations for the MANIFEST feed optics. At this 
time we intend to replace the mask at the telescope focal plane with the fiber outputs from MANIFEST.  As this will 
require no additional or exchangeable GMACS optics, it only impacts the optical performance and flexure control 
requirements for GMACS. Collaboration with the MANIFEST team has been initiated and we expect both teams to 
continue development in tandem. Progress with MANIFEST development is given in paper 9908-35810 at this 
conference. 

7 FUTURE WORK 
In this section we describe some of the future work we will perform in parallel to the optical design optimization.  

Our first trade study will concern developing faster cameras which will yield larger FOV’s. The focal distances of the 
collimator and the camera, FoV and detector size are interdependent parameters which can be modified based on several 
project requirements and restrictions. We have chosen to start the design process with the optical parameters listed in 
Table 2 to demonstrate the viability of the proposed GMACS optical system. However, different configurations can be 
chosen to reach different performance goals, for instance higher FoV, or a reduction in the number of detectors in each 
array. 

We also plan to explore an observing mode in which the camera is rotated about the optical axis by 90°. This 
implementation of a camera rotation mechanism would allow a swap between the dispersion and slit direction at the 
detector when spatial, rather than spectral, coverage is at a premium.  This feature would add to the optomechanical 
complexity and require significant field widening of the collimator, both of which have yet to be explored.  

Finally, we will explore a catadioptric ~f/1 solution with a 4k-by-6k detector for the UV/blue arm, where internal 
detector vignetting losses are less than transmission losses. The most difficult requirement for the blue camera design is 
the 25% of peak throughput at the UV bandpass limit. To accomplish this a careful glass selection must be performed 
based not only on supplier’s capabilities, but the glasses’ internal transmittance. These restrictions result in very limited 
glass choices suitable for design and optimization. Therefore, in order to provide an alternative to avoid the restriction of 
the internal transmittance of the glasses, we are studying the possibility and desirability of designing an ~f/1 catadioptric 
camera with a unique 4k x 6k detector only for the blue camera. Although this camera concept causes throughput losses 
due to the obscuration, the effective throughput would not be as highly dependent on the wavelength as it is for the 
refractive camera. The refractive elements of the catadioptric camera, for instance, the flattener lens/subsystem, can be 
manufactured with high internal UV transmittance glasses (fused silica and CaF2). This catadioptric camera concept can 
considerably increase the UV throughput.  
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