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Abstract: Intensive Monitoring Survey of Nearby Galaxies (IMSNG) is a high cadence observation
program monitoring nearby galaxies with high probabilities of hosting supernovae (SNe). IMSNG aims to
constrain the SN explosion mechanism by inferring sizes of SN progenitor systems through the detection
of the shock-heated emission that lasts less than a few days after the SN explosion. To catch the signal,
IMSNG utilizes a network of 0.5-m to 1-m class telescopes around the world and monitors the images of
60 nearby galaxies at distances D < 50 Mpc to a cadence as short as a few hours. The target galaxies are
bright in near-ultraviolet (NUV) with MNUV < −18.4 AB mag and have high probabilities of hosting SNe
(0.06 SN yr−1 per galaxy). With this strategy, we expect to detect the early light curves of 3.4 SNe per
year to a depth of R ∼ 19.5 mag, enabling us to detect the shock-heated emission from a progenitor star
with a radius as small as 0.1 R�. The accumulated data will be also useful for studying faint features
around the target galaxies and other science projects. So far, 18 SNe have occurred in our target fields (16
in IMSNG galaxies) over 5 years, confirming our SN rate estimate of 0.06 SN yr−1 per galaxy.
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1. INTRODUCTION

Many stars die with dramatic explosions, which we call
supernovae (SNe). Understanding the SN explosion has
several implications of significant astrophysical impor-
tance. For example, type Ia SNe (SNe Ia) have been used
as a key distance indicator to understand the expansion
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of the universe, but the theoretical reason behind the
success of SNe Ia as a distance indicator is yet to be
clarified. SNe also signify the end of the life of stars and
detailed knowledge on SNe completes our understanding
on the stellar evolution.

The SN explosion mechanism has been well for-
mulated theoretically. Core-collapse SNe (CC SNe) are
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neutrino-powered explosions in massive stars and SNe Ia
are thermonuclear explosions of white dwarfs (WDs) in
close binary systems (Branch & Wheeler 2017). Studies
on light curves, spectra, neutrino emission, host galaxies,
and remnants of SNe support such an idea. However,
direct observational evidence for the proposed SN pro-
genitor star properties is scarce and mostly limited to
bright progenitors of SNe II-P (e.g., Smartt et al. 2004;
Fraser et al. 2011; Van Dyk et al. 2012a,b, 2013), and
efforts are still continuing to gather the observational
proof for the SN explosion theoretical framework. Es-
pecially, what has been lacking is the evidence whether
the progenitor stars have the characteristic sizes as the-
oretically proposed. For SNe Ia, the progenitor system
is thought to be a binary star system with an exploding
WD, and the companion star can be either a main se-
quence or a red giant star (single degenerate system; e.g.,
Whelan & Iben 1973; Nomoto 1982; Hachisu et al. 1996;
Li & van den Heuvel 1997; Langer et al. 2000; Han &
Podsiadlowski 2004), or another WD (double degenerate
system; e.g., Webbink 1984; Iben & Tutukov 1984; Yoon
et al. 2007; Pakmor et al. 2012). The thermonuclear
explosion from the merger of a WD and an asymptotic
giant branch (AGB) star can also occur (core degener-
ate system; e.g., Sparks & Stecher 1974; Soker 2015).
For CC SNe, a wide range of progenitors are expected,
from red supergiants with R ' several 100R� (Chun et
al. 2018) to H/He envelope-stripped progenitors of SNe
Ib/Ic with R . a few R� (Yoon et al. 2010). A binary
origin of stripped-envelope SNe (i.e., SN IIb, Ib and
Ic) has been suggested, and their progenitor sizes can
have a significant diversity from several 100 to ∼ 0.2R�
(Yoon et al. 2010; Eldridge et al. 2013; Yoon 2015; Yoon
et al. 2017; Ouchi & Maeda 2017).

Recently, it has been recognized that the light curve
of SN shortly after its explosion contains valuable in-
formation about its progenitor system and can be used
to set a limit on the progenitor size, R∗ (e.g., Kasen
2010; Nakar & Sari 2010; Rabinak & Waxman 2011;
Piro & Nakar 2013, 2014; Piro & Morozova 2016; Noe-
bauer et al. 2017). The information is contained in the
shock-heated emission that appears shortly after the
explosion from the outermost layers of SN ejecta, and,
if the progenitor is in a binary system, the companion
star that is affected by SN shock. The brightness of the
shock-heated emission is proportional to the size of the
exploding star (CC SNe) and/or the companion star
(SNe Ia). This emission lasts for only a few hours to a
few days after the explosion and it is expected to be only
R = −12 AB mag or fainter for a double degenerate
binary progenitor with sizes of 0.01 to 0.1 R� (Yoon
et al. 2007; Pakmor et al. 2012; Tanikawa et al. 2015),
but could be brighter for massive stars at R = −14 to
−16 AB mag for progenitor sizes of 1.0 to 10.0 R� (see
Figure 1).

Despite the difficulties associated with catching the
SN shock-heated emission, several groups succeeded in
detecting the emission or setting the upper limits on
the progenitor stars. For SNe IIb, Bersten et al. (2012)
analyzed the early light curve of SN 2011dh (SN IIb) and

concluded that its progenitor size is R ' 200R�. The
HST images taken two years after the explosion revealed
that the progenitor was indeed a yellow supergiant star
with an extended envelope (Van Dyk et al. 2013). For
SNe Ia, it has been proven more challenging to catch the
shock-heated emission probably due to the fact that the
companion star appears to be compact. For example,
limits on stellar sizes have been obtained for several SNe
Ia from early light curves such as SN 2009ig (Foley et al.
2012), SN 2011fe (Nugent et al. 2011; Bloom et al. 2012),
SN 2012cg (Silverman et al. 2012; Shappee et al. 2018),
SN 2012ht (Yamanaka et al. 2014), SN 2013dy (Zheng
et al. 2013), and a number of low redshift SNe Ia studied
by the Kepler mission (Olling et al. 2015), all pointing
toward small-sized companion stars. However, several
results exist that allow a larger companion star. Im et al.
(2015b) caught the very early light curve of SN 2015F at
23.9 Mpc using the Lee Sang Gak Telescope (LSGT; Im
et al. 2015a). The detection of a possible shock-heated
emission suggests that the companion star size is . 1R�.
Goobar et al. (2015) studied the shape of the early light
curve of SN 2014J, suggesting a large progenitor for
this SN Ia. Cao et al. (2015b) claimed a detection
of UV flash in the early light curve of another SN Ia,
iPTF14atg, again suggesting a very large companion
star. Hosseinzadeh et al. (2017) analyzed the early
light curve of SN 2017cbv showing that the best fit is
obtained when assuming a companion star with a radius
of R = 56R�. However, they also caution that the blue
excess emission could be due to other mechanisms such
as circumstellar material interaction. For a review on
this subject on both theoretical and observational sides,
see Maeda & Terada (2016). Constraints on SNe Ib/Ic
are much scarcer than SNe Ia, mostly due to the lack of
early light curve data.

To catch the shock-heated emission in the SN early
light curve, we are conducting a monitoring survey of
nearby galaxies using 1-m class telescopes around the
world. The sample is made of galaxies at distances less
than 50 Mpc. The galaxies are chosen to be those that
have relatively high probabilities of hosting SNe due to
its high star formation rate (SFR) and low extinction.
The cadence of the observation can be as short as a few
hours, but nominally about 1 day. In this paper, we
describe this survey, the Intensive Monitoring Survey of
Nearby Galaxies (IMSNG). Section 2 describes the target
selection criteria, Section 3 describes the observational
facilities used by the survey, and Section 4 examines the
expected rate of SNe in the IMSNG galaxies. The SNe
and other transients that occurred in IMSNG galaxies
are given in Section 5, and additional science cases of
IMSNG are presented in Section 6. Finally, Section 7
gives the summary and future prospects of the survey.

2. TARGET SELECTION

In general, hundreds of galaxies need to be monitored
every night to catch the early light curves of a few SNe
per year, since the SN rate (SN yr−1 per galaxy) is on
average of order of 0.01 SN yr−1 (e.g., see Graur et al.
2017a). This, however, is not a practical approach since
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there is a limit on the number of galaxies that can be
covered by a single telescope at a given site.

In order to increase the chance of catching SNe, we
examined how host galaxy properties influence the SN
rate. It has been known that galaxy properties such as
SFR, stellar mass, and specific SFR affect the SN rate
(e.g., Botticella al. 2012; Gao & Pritchet 2013; Graur
et al. 2017a,b). CC SNe occur in massive stars that
trace star formation activities (e.g., Botticella al. 2012).
Similarly, recent studies suggest that SNe Ia also occur
more often in galaxies with higher SFRs (e.g., Smith et al.
2012; Gao & Pritchet 2013; Botticella et al. 2017), with
the SN rate being about 10 times higher in star forming
galaxies than in passively evolving galaxies (Smith et al.
2012) and the SN rate increasing proportionally with
SFR (Smith et al. 2012; Gao & Pritchet 2013). This is so
because the distribution of the delay time between the
WD detonation and the time of the binary formation is
proportional to t−1, preferring SNe Ia with short delay
times. Discussions on the delay time distribution and the
dependence on SFR can be found in Maoz & Mannucci
(2012) and references therein.

Taking into account these factors, we selected our
targets to be galaxies based on the following criteria.
Note that MNUV is corrected for the Galactic extinction
(Bai et al. 2015).

1. MNUV < −18.4 AB mag

2. D < 50 Mpc

3. b > 20 degree

The first criterion about the NUV magnitude is
driven by the fact that SNe occur more frequently in
galaxies with high SFR, and NUV is a good proxy for
SFR. The NUV magnitude cut roughly corresponds to
an SFR of 1 M� yr−1. Furthermore, the NUV selec-
tion preferentially selects high SFR with little internal
extinction. This way, we can expect to detect the shock-
heated emission without worrying much about the dust
extinction correction that can complicate the light curve
analysis. As we shall show later, this NUV magnitude
cut provides a galaxy sample whose mean SN rate is
about 0.06 SN yr−1 – about a factor of six increase
above the canonical SN rate.

The second criterion of D < 50 Mpc makes it pos-
sible to detect the shock-heated emission of SNe with
small progenitors. Figure 1 shows the light curve of
the shock-heated emission for various sizes of progenitor
stars at D = 50 Mpc, and a typical SN Ia light curve
without shock-heated emission. Two model curve sets
are plotted, one for CC SN by Rabinak & Waxman
(2011) and another for a companion star in an SN Ia of
Kasen (2010). The model parameters are adopted as in
Im et al. (2015b). Note that the shock-heated emission
from SNe Ia can be anisotropic, and can be about 10
times weaker than the case for the optimal viewing angle
which is plotted in Figure 1. With the IMSNG depth of
R = 19.5 magnitude, Figure 1 demonstrates that we can
theoretically expect the detection of the shock-heated
emission from a progenitor size of ∼ 1 R� at D = 50

Figure 1. Model predictions of the shock-heated emission
light curves at 50 Mpc, overlayed on the best-fit early light
curve of SN 2015F (Im et al. 2015b) that is fitted to the data
after ∼ 1 day after the explosion and shifted to 50 Mpc (the
solid black line). The best-fit early light curve of SN 2015F
represents a typical SN Ia light curve due to radioactive
decay. The dashed lines are for Rabinak & Waxman (2011)
for a CC SN, and the dotted lines are for Kasen (2010) due
to the shock-heated emission from a companion star in SN
Ia. The shock-heated emission from SN Ia is expected to be
anisotropic, and can be fainter by 2.5 mag. The case plotted
here is for the most optimal viewing angle.

Mpc, under the most optimal condition on the view-
ing angle and/or the timing of the observation. At 20
Mpc, we can reach 2 magnitude fainter, and possibly
detect the shock-heated emission for a progenitor with
∼ 0.1R�. Note that merger of a binary WD system
may occur in a common envelope that remains during
the stellar evolution, and such an event would produce
shock-heated emission signal identical to an exploding
∼ 0.1R� star (Pakmor et al. 2012; Tanikawa et al. 2015).
There are uncertainties in the models too, but consider-
ing that the median distance to the IMSNG galaxies is
about 30 Mpc, our goal of constraining the progenitor
size down to ∼ 1 R� should be realistic for many of the
IMSNG galaxies if not all.

For the shock-heated emission from SNe Ia, there
is a degeneracy between the viewing angle and the pro-
genitor size. It is not clear yet how the degeneracy can
be broken from the shock-heated emission alone, but
we expect to be able to statistically infer the mean size
of SNe Ia companion stars once we accumulate a large
number of shock-heated emission data (> 10 objects).

The third criterion is imposed in order to avoid the
heavy Galactic extinction and contamination from stars
in our Galaxy. However, several galaxies at low Galactic
latitude are found to be prolific in SNe or quite bright
in MNUV. For this reason, we made two exceptions, and
included NGC 6946 and ESO 182-G10 in our sample.

Based on these criteria, we selected galaxies for our
monitoring study from the Galaxy Evolution Explorer
(GALEX) UV atlas of Gil de Paz et al. (2007) and Bai
et al. (2015), where the list of Bai et al. (2015) is a more
extended version of Gil de Paz et al. (2007). We started
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Figure 2. MNUV (AB) versus distance (Mpc) of IMSNG
galaxies (red squares), plotted over galaxies from Bai et al.
(2015) (gray circles). The area within the black dashed line
denotes the region where we selected IMSNG galaxies.

our selection originally from the Gil de Paz et al. (2007)
list and created a list of 46 target galaxies, but now
settled on 60 galaxies after expanding the list using the
Bai et al. (2015) catalog. Note that there are 22 active
galactic nuclei (AGNs) in the 60 IMSNG galaxies1 – two
Seyfert 1.5’s, nine Seyfert 2’s, ten low-ionization nuclear
emission line regions (LINERs), and one obscured low
luminosity AGN (oLLAGN). So, all of them have either
obscured nuclei or low level of AGN, and we can consider
their UV luminosities to be dominated by star formation.

The list of the 60 IMSNG galaxies is given in Ta-
ble 1. Figure 2 shows the MNUV and distance, D, of the
IMSNG galaxies.

3. FACILITIES

For IMSNG, we use telescopes at multiple locations
around the world. This is necessary to cover different
time zones and shorten the time cadence to ∼8 hours.
Table 2 lists our current facilities, and Figure 3 shows
a map where these facilities are located. Overall, most
of our telescopes have field of views of order of 15 to 30
arcmin sizes, except for one wide-field 0.25m telescope
with a 2.34◦ × 2.34◦ field of view. This 0.25m telescope
is a piggyback system on the McDonald Observatory’s
0.8m telescope.

Observations have been carried out nearly every
night with LSGT 0.43m, DOAO 1.0m, and the Maidanak
1.5m telescopes (Im et al. 2015a; Ehgamberdiev 2018),
but in other locations, the observations have been carried
out during time blocks that last about one to two weeks
per month. If a galaxy is monitored at Korea, US, and
Uzbekistan in one day, this would give roughly an 8 hour
cadence. Some equatorial targets can be covered with
the telescopes in both hemispheres, and the time cadence
can be as short as 2 hours between the observations at
Korea and Australia. The exposure times per target

1The AGNs are identified through the NASA/IPAC Extragalactic
Database at http://ned.ipac.caltech.edu.

Figure 3. The locations of the telescopes used by IMSNG.
The background world map is taken from http://trip8.co.

vary between facilities from one minute to 5 minutes,
and they are set to reach about 19.5 magnitude in R
for point-source detection. We mostly use R-band filter
for the monitoring observation, although a combination
of B and R filters are used at several sites. For some
telescopes, r-band filter is used because R-band is not
available (LSGT, and the Otto-Struve 2.1m). For the
0.25m telescope, we use V -band since IMSNG galaxies
are simultaneously monitored in the other bands with
the 0.8m telescope. Multiple filter observations (BV RI
or griz) are initiated once an SN is identified.

The data taken from each telescope are downloaded
to the server at Seoul National University, where they are
reduced and analyzed. The data analysis, the transient
detection method, and the efficiency of the observation
of IMSNG will be presented elsewhere (C. Choi et al. in
preparation).

4. SN RATE OF UV-SELECTED GALAXIES

As we described earlier, the key to the success of our
program is to select galaxies with high SN rates. We
adopted the NUV selection cut for this purpose. Here,
we show that SN rates are indeed high for galaxies
selected this way. In Figure 4, we show the SN rate
per year for galaxies that are selected based on GALEX
NUV or far-ultraviolet (FUV) magnitudes. The UV
magnitudes are taken from Bai et al. (2015). Galaxies
are limited to those at distance less than 50 Mpc for
which we can detect faint shock-heated emission. Nearby
galaxies have been heavily monitored over the past 10-20
years by professional and amateur astronomers, and we
expect that the completeness of SNe discovery rate is
very high.

To estimate the SN rate, we adopted the period of
2006 to 2016 (11 years), over which the SN discovery
completeness should be high thanks to various transient
sky surveys. Figure 4 shows that SN rate increases with
the UV magnitude in agreement with previous studies
that SN rates are higher in galaxies with high SFR
(e.g., Botticella al. 2012; Gao & Pritchet 2013). At the
brightest bins in NUV, the rate can go up to 0.2 SN

http://ned.ipac.caltech.edu
http://trip8.co
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Table 1
IMSNG target galaxies

Name [AGN type] RA Dec DL NUV Past SNe
(J2000) (J2000) (Mpc) (AB)

(1) (2) (3) (4) (5) (6)

NGC 289 00:52:42.348 −31:12:20.92 24.0 -18.77
NGC 337 [LIN] 00:59:50.100 −07:34:41.45 23.0 -18.64 1998dn, 2011dq, 2014cx
NGC 488 01:21:46.836 +05:15:24.48 38.0 -18.88 1976G, 2010eb
NGC 895 02:21:36.468 −05:31:17.00 37.0 -19.02 2003id
NGC 1097 [LIN] 02:46:19.092 −30:16:29.89 14.0 -18.55 1992bd, 1999eu, 2003B
NGC 1309 03:22:06.600 −15:24:00.07 29.0 -19.04 2002fk, 2012Z
NGC 1365 [S1.5] 03:33:36.396 −36:08:25.84 18.0 -19.33 1957C, 1983V, 2001du, 2012fr
UGC 2855 03:48:20.736 +70:07:58.30 14.0 -18.75 2014dg
NGC 1672 [S2] 04:45:42.516 −59:14:50.42 19.0 -19.34 2017gax
NGC 2207/IC 2163a 06:16:22.044 −21:22:21.76 38.0 -20.32 1975A, 1999ec, 2003H, 2010jp, 2013ai, 2018lab
NGC 2336 [S2] 07:27:04.068 +80:10:41.02 29.0 -18.83 1987L
NGC 2442 [LIN] 07:36:23.796 −69:31:50.70 21.0 -19.20 1999ga, 2015F
NGC 2775 09:10:20.100 +07:02:17.23 43.0 -18.69 1993Z
NGC 2776 09:12:14.508 +44:57:17.53 41.0 -19.34
NGC 2782 [oLLAGN] 09:14:05.064 +40:06:49.57 41.0 -18.76 1994ak
NGC 2993/2992 [S2]a 09:45:48.312 −14:22:06.17 34.0 -18.85 2003ao, AT2017ejx
IC 2537 10:03:51.876 −27:34:14.81 36.0 -18.40 2010lm
NGC 3147 [S2] 10:16:53.688 +73:24:02.63 40.0 -19.29 1972H, 1997bq, 2006gi, 2008fv
NGC 3169 [LIN] 10:14:14.892 +03:27:58.86 45.0 -19.25 1984E, 2003cg
NGC 3183 10:21:48.960 +74:10:37.16 49.0 -18.56
NGC 3244 10:25:28.848 −39:49:39.00 38.0 -18.63 2010ev
NGC 3294 10:36:16.236 +37:19:28.63 30.0 -18.43 1990H, 1992G
NGC 3344 10:43:31.116 +24:55:19.74 20.0 -19.42 2012fh
NGC 3367 [S2] 10:46:35.004 +13:45:02.09 45.0 -19.84 1986A, 1992C, 2003aa, 2007am, 2018kp
NGC 3359 10:46:36.840 +63:13:26.83 23.0 -19.07 1985H
NGC 3445 10:54:35.712 +56:59:23.32 33.0 -18.55
NGC 3629 11:20:31.776 +26:57:47.84 38.0 -18.55
NGC 3646 11:21:43.092 +20:10:11.10 44.0 -19.47 1989N, 1999cd
NGC 3938 11:52:49.368 +44:07:14.88 19.0 -18.87 1961L, 1964I, 2005ay, 2017ein
NGC 4030 12:00:23.580 −01:06:00.00 27.0 -19.11 2007aa
NGC 4038 (Arp 244) 12:01:53.004 −18:52:04.76 21.0 -19.40 1921A, 1974E, 2004gt, 2007sr , 2013dk
NGC 4039 (Arp 244) 12:01:53.616 −18:53:11.11 21.0 -19.39
NGC 4108 12:06:44.316 +67:09:46.12 41.0 -18.50 ASASSN-15lf
NGC 4254 (M 99) [LIN] 12:18:49.572 +14:24:59.08 16.0 -19.03 1967H, 1972Q, 1986I, 2014L
NGC 4303 (M 61) [S2] 12:21:54.936 +04:28:27.05 18.0 -19.54 1926A, 1961I, 1964F, 1999gn, 2006ov, 2008in, 2014dt
NGC 4314 [LIN] 12:22:31.980 +29:53:43.48 44.0 -18.46 1954A
NGC 4321 (M 100) [LIN] 12:22:54.768 +15:49:18.80 14.0 -18.65 2006X
NGC 4500 12:31:22.152 +57:57:52.81 48.0 -18.47
NGC 4653 12:43:50.916 −00:33:40.54 39.0 -18.66 1999gk, 2009ik
NGC 4814 12:55:21.936 +58:20:38.80 40.0 -18.53
NGC5194 [S2]/5195a (M51) 13:29:52.692 +47:11:42.54 8.4 -19.03 1945Ab, 1994I, 2005cs, 2011dh
NGC 5236 (M83) 13:37:00.876 −29:51:56.02 4.9 -18.82 1923A, 1945B, 1950B, 1957D, 1968L, 1983N
NGC 5371 [LIN] 13:55:39.936 +40:27:41.90 33.0 -19.09 1994Y
NGC 5430 14:00:45.720 +59:19:42.24 47.0 -18.70 PTF10acbu (PSN)
NGC 5457 (M101) 14:03:12.600 +54:20:56.62 6.9 -19.36 1909A, 1951H, 1970G, 2011fe
NGC 5584 14:22:23.772 −00:23:15.32 25.0 -18.43 1996aq, 2007af
NGC 5668 14:33:24.300 +04:27:01.19 25.0 -18.72 1952G, 1954B, 2004G
NGC 5850 [LIN] 15:07:07.644 +01:32:40.74 38.0 -18.65 1987B
NGC 5962 15:36:31.680 +16:36:28.15 30.0 -18.68 2016afa, 2017ivu
NGC 6070 16:09:58.680 +00:42:34.31 27.0 -18.58
NGC 6555 18:07:49.188 +17:36:17.53 35.0 -18.54
ESO 182-G10c 18:18:30.600 −54:41:39.41 49.0 -19.00 2006ci
NGC 6744 [LIN] 19:09:45.900 −63:51:27.72 9.3 -19.05 2005at
NGC 6814 [S1.5] 19:42:40.608 −10:19:25.32 23.0 -18.61
NGC 6946c,d 20:34:52.572 +60:09:13.57 6.1 -19.12 1980K, 2002hh, 2004et, 2008S, 2017eaw
NGC 6951 [S2] 20:37:14.088 +66:06:20.45 25.0 -18.66 1999el, 2000E, 2015G
NGC 7083 21:35:44.592 −63:54:09.79 34.0 -18.98 1983Y, 2009hm
NGC 7479 [S2] 23:04:56.676 +12:19:22.12 30.0 -18.96 1990U, 2009jf
NGC 7552 23:16:10.776 −42:35:03.41 29.0 -18.84 2017bzc
NGC 7714/7715a 23:36:14.112 +02:09:18.07 41.0 -19.18 1999dn, 2007fo

(1) Galaxy name. The name in the parenthesis is another notable name of the galaxy, and the AGN types in the large parentheses are S
(Seyfert), LIN (LINER), and oLLAGN; (2) and (3): Equatorial coordinates in J2000; (4) the luminosity distance; (5) NUV absolute
magnitude in AB mag; (6) the past SNe in the galaxy.
a Galaxies in pair, the primary, NUV-selected galaxy number is given first; b In NGC 5195; c Low Galactic latitude target; d This
object had five additional SNe before 1980: 1917A, 1939C, 1948B, 1968D, and 1969P.
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Table 2
The current list of telescopes in the IMSNG network

Observatory/ Instrument Imager Longitude/ Altitude
Telescope Field of view Latitude (m)

Maidanak Observatory
1.5ma

SNUCAMb

4k x 4k
18.′3 × 18.′3

66:53:47E
38:40:22N

2593

SNU Astronomical
Observatory (SAO) 1mc

SBIG STX-16803
4k x 4k

21.′2 × 21.′2
126:57:12E

37:27:25.35N
190

Deokheung Optical Astronomy
Observatory (DOAO) 1m

SOPHIA
2k x 2k

13.′2 × 13.′2
127:26:48E
37:31:35N

81

Sobaeksan Optical Astronomy
Observatory (SOAO) 0.6m

PIXIS 2048B
2k x 2k

17.′6 × 17.′6
128:27:25.3
36:56:03.9N

1340

Lee Sang Gak Telescope
(LSGT) 0.43md

SNUCAM-IIe

1k x 1k
15.′7 × 15.′7

149:03:52E
31:16:24S

1122

Mt. Lemmon Optical Astronomy
Observatory (LOAO) 1mf

ARC CCD camera
4k x 4k

28.′1 × 28.′1
110:47:19.3W
32:26:32.2N

2776

McDonald Observatory (McD)
Otto-Struve 2.1m

SQUEAN/CQUEANg

1k x 1k
4.′7 × 4.′7

104:01:21.4W
30:40:17.4N

2076

McDonald Observatory (McD)
0.8m

CCD camera
2k x 2k

46.′2 × 46.′2
104:01:19W
30:40:17N

2057

McDonald Observatory (McD)
0.25m

FLI16803
4k x 4k

2.34◦ × 2.34◦
104:01:19W
30:40:17N

2057

Observatories are ordered toward E in longitude from the Prime Meridian.
a Ehgamberdiev (2018)
b Im et al. (2010)
c M. Im et al. (in preparation), http://sao.snu.ac.kr
d Im et al. (2015a)
e Choi & Im (2017)
f Han et al. (2005)
g SQUEAN (Kim et al. 2016; Choi et al. 2015) is the upgrade of CQUEAN (Park et al. 2012; Lim et al. 2013; Kim et al. 2011)

yr−1. Unfortunately, there are only a few galaxies that
are very bright in NUV, so we decided to bring down
the magnitude limit to MNUV = −18.4 AB mag, and at
such a limit, we find 0.06 SN yr−1. As we shall show
in the next section, our IMSNG results in the recent
5 years agree well with the estimate from the previous
11-year data, suggesting that the completeness of the
SNe sampling for the IMSNG galaxies in the 2006 to
2016 period is indeed very high.

5. SNE AND OTHER TRANSIENTS IN IMSNG
As of 2018-12-31 UT, 18 SNe occurred among IMSNG
galaxies or in the fields covered by IMSNG over a period
of 5 years since the official start of IMSNG in 2014.
In addition, other events were also detected such as
luminous red novae (LRNe) and eruptions of luminous
blue variables (LBVs). These events are summarized
in Table 3. In the list, we included a special target,
AT2017gfo, the optical counterpart of the gravitational
wave source GW170817 (Abbott et al. 2017b; Troja et
al. 2017), that was intensively observed using IMSNG
facilities, although the host galaxy of AT2017gfo, NGC
4993 (Im et al. 2017b), is not in the IMSNG target list.
Excluding one SN that occurred in the field of NGC 895
and another in IC 2163, 16 SNe are divided into 5 SNe

Ia, 4 SNe Ib/Ic, and 7 SNe II. The current list of 16
SNe in 60 IMSNG galaxies give an SN rate of 3.2 SN
yr−1 per 60 galaxies or 0.053 yr−1 per galaxy, which is
in good agreement with the SN rate of 0.06 SN yr−1

that is based on the 11 year period statistics. The SN
rates in 2016 and 2018 are low (one per year), but these

Figure 4. The occurrence of SNe per year per galaxy (SN
rate) as a function of FUV (blue) or NUV (red) magnitudes
for galaxies within 50 Mpc. The rates were examined over
the period of 2006-2016.

http://sao.snu.ac.kr
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Figure 5. The emergence of SN 2017gax (SN Ib/Ic) in NGC
1672 which is caught by SNUCAM-II on LSGT (Im et al.
2015b; Choi & Im 2017), one of the IMSNG telescopes (Im
et al. 2017a). Each image shows a stack of three 180 sec
exposure frames in r-band, and the green circle with a ra-
dius of 20.′′0 indicates the location of the SN. This example
demonstrates that the high cadence IMSNG observation can
catch the early optical light curves of SNe. The UT date of
the observation is also indicated in each image.

low rates should be just a statistical fluctuation. The
expected 1-σ error of the yearly SN rate is

√
(3.4) = 1.8,

and the low rate of one per year is only 1.3-σ away from
the mean expected rate of 3.4 SN yr−1.

Figure 5 shows an example of an SN event that
occurred in one of the IMSNG galaxies. This example
shows an IMSNG image of SN 2017gax in NGC 1672
(Im et al. 2017a), before and after its explosion. In
this particular example, our first detection of the SN
precedes the date of the image used for the discovery of
the event by another group.

6. ADDITIONAL SCIENCE CASES

The data gathered from IMSNG are useful for other
projects too. We list several such projects here.

(1) Other stellar transients: The transients
that can be discovered by IMSNG are not limited to
SNe. Two prominent examples are LRNe and LBV
outbursts. LRNe are a recently recognized class of tran-
sients with their peak luminosities somewhere between
novae and SNe at −14 < MV < −6 mag (Kasliwal 2012).
LRNe are suggested to be due to the merging of two
stars (e.g., Kulkarni et al. 2007), although some think
that these are unusually weak SNe IIP (Pastorello et
al. 2007). Other physical origins for LRNe have been
discussed, such as electron-capture SNe in extreme AGB
stars, LBV eruptions, an asteroids crashing to WDs,
accretion-induced collapses, and peculiar classical novae
(See references in Kasliwal 2012). LBVs are another
rare kind of transients arising from evolved massive stars.
LBVs undergo giant eruptions, becoming up to a few
magnitudes brighter, and when they do so, they are
sometimes mistakenly identified as SNe. Hence, they
get the name of SN impostor. Both LRNe and LBV
outbursts represent unique passages in the stellar evolu-
tion. The IMSNG data provide a long-term light curve
of the pre-brightening period as well as high cadence
light curves after the brightening, which can help us
learn about their progenitors and physical origin of the
explosive events (e.g., Blagorodnova et al. 2017).

Figure 6. (Left) A single exposure (60 seconds) R-band image
near NGC 895 galaxy. A part of NGC 895 is visible on the
left. (Right) A stacked R-band image (2.37 hours) of the
same field. The data taken from 2013 to 2016 were used. A
low SB satellite galaxy candidate is marked as a large, thick
arrow. Merging features are visible in the deep image for a
galaxy on the top and noted with small arrows.

(2) Merging features and satellite galaxies:
The daily cadence data can be stacked to create deep
images of nearby galaxies. The surface brightness (SB)
limit of the stacked images can reach ∼26.5 R mag
arcsec−2 or fainter. At such SB limits, one can identify
faint merging features (e.g., see Hong et al. 2015), or new
low SB satellite galaxies (e.g., Park et al. 2017). These
features will be useful to understand the merging history
of IMSNG galaxies, and the discovery of new satellite
galaxies can help understand the problem related to
the paucity of dwarf satellite galaxies with respect to
the ΛCDM cosmological models. Figure 6 shows an
example of a stacked image of 142 frames of one minute
images of NGC 895 taken at the Maidanak observatory,
corresponding to a total integration time of 2.37 hours,
where a faint low SB satellite galaxy candidate and a
merging feature around another galaxy are found in the
field of NGC 895.

(3) Gravitational wave source optical coun-
terpart: High cadence monitoring observation offers a
unique way to uncover optical counterparts of transients
such as gravitational wave (GW) sources. Localization
areas of GW sources span tens to hundreds of square
degrees, and it is quite common to find several IMSNG
galaxies in the localization area. Optical counterparts
of GW sources can be searched for IMSNG galaxies and
the area surrounding them. One example is SN 2017gax
in NGC 1672 which was in the localization area near
GW170814, the first GW event with the three detector
operation (Abbott et al. 2017a). Eight galaxies were
monitored in the localization area at the time of the
GW170814 event, and one young SN, SN 2017gax was
found in NGC 1672 (Im et al. 2017a). However, our
monitoring observation reveals that the SN was present
in the image one day before the GW event, ruling out
the possibility that SN 2017gax was the GW optical
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Table 3
SNe and other transients in IMSNG galaxies (2014-2018)

Name Type Host Notes

2014

SN 2014L Ic M99/NGC 4254 01/26.83, gap in time cov., test obs. period
SN 2014cx IIP NGC 337 09/2.275, Maidanak(08/31, 09/03)
ASASSN-14ha II NGC 1566 09/10.290, Before LSGT op.
AT2014ej LBV NGC 7552 09/24.460
SN 2014dg Ia UGC 2855 09/11.725, Before the addition of UGC 2855 in the list
SN 2014dt Ia M61/NGC 4303 10/29.838, LOAO/Maidanak out of order

2015

PSN J14021678+5426205 LRN M101 2015/01.20.803a

SN 2015F Ia NGC 2442 03/09, LSGT daily coverage, Im et al. (2015b)
SN 2015G Ibn NGC 6951 03/23.788, altitude too low for LOAO when discovered
ASASSN-15lf IIn NGC 4108 06/15.34, Maidanak/LOAO/McD
DES15X2kvt Ia? NGC 895 10/02, anonymous Ia in the field?

2016

SNhunt306 LBV? NGC 772 02/10.0
AT2016blu/Gaia16ada LBV NGC 4559 02/25.723
SN 2016afa IIP NGC 5962 02/12.958, Maidanak/LOAO/McD
AT2016jbu LBV NGC 2442 12/01.596, LSGT

2017

SN 2017bzc Ia NGC 7552 03/07.219, before sample revision, some LSGT
SN 2017eaw IIP NGC 6946 05/14.238, LOAO(5/14), McD(05/05), Maidanak(05/16)
SN 2017ein Ic NGC 3938 05/25.969, Maidanak(5/23, 25), DOAO(05/24), McD/LOAO
SN 2017ejx IIP NGC 2993 05/30.040, LSGT(05/24,29), LOAO(05/15), DOAO(05/17)
SN 2017gax Ib/Ic NGC 1672 08/14.712, LSGT(from 08/13, 14 and on)
AT2017gfo/GW170817 Kilonova NGC 4993 08/17.98, LSGT, KMTNet
SN 2017ivu IIP NGC 5962 12/11.857, altitude too low when discovered

2018

SN 2018kp Ia NGC 3367 01/24.244, daily coverage from McD, DOAO, LOAO
AT2018ikn AGN flare? NGC 2992 LSGT
SN 2018lab II IC2163 12/29.13, bad weather

The information in Notes include the discovery month and dates in UT, and the primary IMSNG facilities that followed up the event.
The dates of observations around the discovery dates are also indicated in the parentheses for events of interest. The object names in
bold are the events of interest for which we have an extended dataset before and just after the explosion.
a After the discovery, the object was found to have R = 16.36 mag at 2014-11-10 (UT), which is comparable to the brightness at the
discovery time (V = 17.5 mag), so the burst could have occurred earlier (Cao et al. 2015a). Also, long-term light monitoring data prior
to 2015 suggest that the object was a slow rising source (Goranskij et al. 2016; Blagorodnova et al. 2017).

counterpart (Figure 5).

(4) AGNs: Twenty-two of our targets are known
AGNs (Seyfert 1.5, Seyfert 2, and LINER galaxies, see
Table 1). Their nuclear activities can be traced with
our survey at the IMSNG cadence. The monitoring of
the nuclei of IMSNG galaxies could also reveal unex-
pected AGN activities that can be found only through
high cadence monitoring (e.g., Kim et al. 2018). One
such example is AT2018ikn which is suggested to be a
transient in a Seyfert 2 galaxy, NGC 2992, a possible
AGN flare event (Berton et al. 2018).

(5) Variable stars: High cadence observations
offer an excellent opportunity to discover new vari-
able stars in the vicinity of IMSNG galaxies. We have
searched for new variable stars, and found more than a
dozen cases so far (Choi et al. 2018).

(6) Asteroids: Asteroids often appear in the IM-
SNG data. Their locations can be traced to provide
constraints on the orbits of asteroids.

7. SUMMARY AND PROSPECTS

In this paper, we gave an overview of IMSNG, which is
a monitoring observation project of 60 nearby galaxies
at < 50 Mpc with a goal cadence of 8 hours. The main
scientific objective of the project is to catch the early
light curve of SNe, within one day from the explosion,
and constraining the SN progenitor system properties
such as the size of the progenitor star. Several such early
light curves have been detected among IMSNG galaxies
so far (Im et al. 2015b). Nine 1-m class telescopes are
currently being used for the monitoring observation.
IMSNG galaxies are selected to be galaxies that are
bright in NUV (MNUV < −18.4 mag), and we find that
the SN rate of the IMSNG galaxies to be about 0.06 SN
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yr−1 using SNe that appeared during the period of 2006-
2016, which is six times higher than the SN rate without
the UV selection. IMSNG started in 2014, and since
then, there have been 16 SNe in the 60 IMSNG galaxies,
confirming our SN rate estimate of 0.06 SN yr−1. With
the advance of high cadence transient surveys, we expect
many SNe to be discovered in their early stages. Yet,
a cadence of a few hours is difficult to achieve without
employing telescopes at multiple longitudes. In this
regard, intensive monitoring observations with small
telescopes around the world like IMSNG can cover the
niche science where cadence of less than a few hours is
desired to the depths of ∼ 19.5 mag.

ACKNOWLEDGMENTS

We thank the anonymous referees for their useful and
constructive suggestions to improve the paper. This
research was supported by the Basic Science Research
Program through the National Research Foundation
of Korea (NRF) funded by the Ministry of Education
(NRF-2017R1A6A3A04005158). We thank the staffs at
iTelescope.Net, DOAO, LOAO, SOAO, Maidanak, and
McDonald observatories for their help with the obser-
vations and maintenance of the facilities. The research
made use of the data taken with LOAO and SOAO
operated by the Korea Astronomy and Space Science In-
stitute (KASI), DOAO of National Youth Space Center
(NYSC), McDonald Observatory, Maidanak Observatory,
and the Siding Spring Observatory.

REFERENCES

Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017a,
GW170814: A Three-Detector Observation of Gravita-
tional Waves from a Binary Black Hole Coalescence, PRL,
119, 141101

Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017b,
Multi-Messenger Observations of a Binary Neutron Star
Merger, ApJL, 848, 12

Bai, Y., Liu, J., & Wang, S. 2015, An Updated Ultraviolet
Catalog of GALEX Nearby Galaxies, ApJS, 220, 6

Bersten, M. C., Benvenuto, O. G., Nomoto, K., et al. 2012,
The Type IIb Supernova 2011dh from a Supergiant Pro-
genitor, ApJ, 757, 31

Berton, M., Congiu, E., Benetti, S., et al. 2018, ePESSTO
Spectroscopic Classification of Optical Transients, ATel,
12216

Blagorodnova, N., Kotak, R., Polshaw, J., et al. 2017, Com-
mon Envelope Ejection for a Luminous Red Nova in M101,
ApJ, 834, 107

Bloom, J. S., Kasen, D., Shen, K. J., et al. 2012, A Compact
Degenerate Primary-Star Progenitor of SN 2011fe, ApJL,
744, L17

Botticella, M. T., Cappellaro, E., Greggio, L., et al. 2017,
Supernova Rates from The SUDARE VST-Omegacam
Search II. Rates in a Galaxy Sample, A&A, 598, A50

Botticella, M. T., Smartt, S. J., Kennicutt, R. C. Jr., Cap-
pellaro, E., Sereno, M., & Lee, J. C. 2012, A Comparison
between Star Formation Rate Diagnostics and Rate of Core
Collapse Supernovae within 11 Mpc, A&A, 537, A132

Branch, D., & Wheeler, J. C. 2017, Supernova Explosions:
Astronomy and Astrophysics Library (Berlin: Springer)

Cao, Y., Kasliwal, M. M., Chen, G., & Arcavi, I. 2015a, iPTF
Observation of PSN J14021678+5426205, ATel, 7070

Cao, Y., Kulkarni, S. R., Howell, D., et al. 2015b, A Strong
Ultraviolet Pulse from a Newborn Type Ia Supernova,
Nature, 521, 328

Choi, C., & Im, M. 2017, Seoul National University Camera
II (SNUCAM-II): The New SED Camera for the Lee Sang
Gak Telescope (LSGT), JKAS, 50, 71

Choi, N., Park, W.-K., Lee, H.-I., Ji, T.-G., Jeon, Y., Im,
M., & Pak, S. 2015, A New Auto-Guiding System for
CQUEAN, JKAS, 48, 177

Choi, S., Choi, C., & Im, M. 2018, Photometry of Fifteen
New Variable Sources Discovered by IMSNG, AAVSO, 46,
1

Chun, S.-H., Yoon, S.-C., Jung, M.-K., Kim, D. U., & Kim,
J. 2018, Evolutionary Models of Red Supergiants: Ev-
idence for a Metallicity-Dependent Mixing Length and
Implications for Type IIP Supernova Progenitors, ApJ,
853, 79

Ehgamberdiev, S. 2018, Modern Astronomy at the Maidanak
Observatory in Uzbekistan, Nature Astronomy, 2, 349

Eldridge, J. J., Fraser, M., Smartt, S. J., Maund, J. R., &
Crockett, R. M. 2013, The Death of Massive Stars - II.
Observational Constraints on The Progenitors of Type Ibc
Supernovae, MNRAS, 436, 774

Foley, R. J., Challis, P. J., Filippenko, A. V., et al. 2012,
Very Early Ultraviolet and Optical Observations of the
Type Ia Supernova 2009ig, ApJ, 744, 38

Fraser, M., Ergon, M., Eldridge, J. J., et al. 2011, SN 2009md:
Another Faint Supernova from a Low-Mass Progenitor,
MNRAS, 417, 1417

Gao, Y., & Pritchet, C. 2013, Correlations between SDSS
Type Ia Supernova Rates and Host Galaxy Properties, AJ,
145, 83

Gil de Paz, A., Boissier, S., Madore, B. F., et al. 2007, The
GALEX Ultraviolet Atlas of Nearby Galaxies, ApJS, 173,
185

Goobar, A., Kormer, M., Siverd, R., et al. 2015, Constraints
on the Origin of the First Light from SN 2014J, ApJ, 799,
106

Goranskij, V. P., Barsukova, E. A., Spiridonova, O. I., et
al. 2016, Photometry and Spectroscopy of the Luminous
Red Nova PSNJ14021678+5426205 in the Galaxy M101,
Astrophysical Bulletin, 71, 82

Graur, O., Bianco, F. B., Huang, S., et al. 2017a, LOSS
Revisited. I. Unraveling Correlations between Supernova
Rates and Galaxy Properties, as Measured in a Reanalysis
of the Lick Observatory Supernova Search, ApJ, 837, 120

Graur, O., Bianco, F. B., Modjaz, M., et al. 2017b, LOSS
Revisited. II. The Relative Rates of Different Types of
Supernovae Vary between Low- and High-Mass Galaxies,
ApJ, 837, 120

Hachisu, I., Kato, M., & Nomoto, K. 1996, A New Model
for Progenitor Systems of Type Ia Supernovae, ApJL, 470,
L97

Han, W., Mack, P., Lee, C.-U., et al. 2005, Development of
a 1-m Robotic Telescope System, PASJ, 57, 821

Han, Z., & Podsiadlowski, Ph. 2004, The Single-Degenerate
Channel for the Progenitors of Type Ia Supernovae, MN-
RAS, 350, 1301

Hong, J., Im, M., Kim, M., & Ho, L. C. 2015, Correlation
between Galaxy Mergers and Luminous Active Galactic
Nuclei, ApJ, 804, 34

Hosseinzadeh, G., Sand, D. J., Velenti, S., et al. 1997, Early



20 Im et al.

Blue Excess from the Type Ia Supernova 2017cbv and
Implications for Its Progenitor, ApJL, 845, L11

Iben, I. Jr., & Tutukov, A. V. 1984, Supernovae of Type I
as End Products of the Evolution of Binaries with Com-
ponents of Moderate Initial Mass (M not Greater than
About 9 Solar Masses), ApJS, 54, 335

Im, M., Choi, C., & Kim, K. 2015a, Lee Sang Gak Telescope
(LSGT): A Remotely Operated Robotic Telescope for Ed-
ucation and Research at Seoul National University, JKAS,
48, 207

Im, M., Choi, C., Lee, H. M., et al. 2017a, LIGO/Virgo
G297595: LSGT Observation of Nearby Galaxies, GCN,
21885

Im, M., Choi, C., Yoon, S.-C., et al. 2015b, The Very Early
Light Curve of SN 2015F in NGC 2442: A Possible Detec-
tion of Shock-Heated Cooling Emission and Constraints
on SN Ia Progenitor System, ApJS, 221, 22

Im, M., Ko, J., Cho, Y., Choi, C., Joen, Y., Lee, I., &
Ibrahimov, M. 2010, Seoul NAtional University 4K x 4K
Camera (SNUCAM) for Maidanak Observatory, JKAS,
43, 75

Im, M., Yoon, Y., Lee, S.-K., et al. 2017b, Distance and Prop-
erties of NGC 4993 as the Host Galaxy of the Gravitational-
Wave Source GW170817, ApJL, 849, 16

Kasen, D. 2010, Seeing the Collision of a Supernova with Its
Companion Star, ApJ, 708, 1025

Kasliwal, M. M. 2012, Systematically Bridging the Gap
between Novae and Supernovae, PASA, 29, 482

Kim, E., Park, W.-K., Jeong, H., et al. 2011, Auto-Guiding
System for CQUEAN (Camera for Quasars in Early Uni-
verse), JKAS, 44, 115

Kim, J., Karouzos, M., Im, M., et al. 2018, Intra-Night
Optical Variability of Active Galactic Nuclei in the Cosmos
Field with the KMTNet, JKAS, 51, 89

Kim, S., Jeon, Y., Lee, H.-I., et al. 2016, Development of
SED Camera for Quasars in Early Universe (SQUEAN),
PASP, 128, 5004

Kulkarni, S., R., Ofek, E. O., Rau, A., et al. 2007, An
Unusually Brilliant Transient in the Galaxy M85, Nature,
447, 458

Langer, N., Deutschmann, A., Wellstein, S., & Hoflich, P.
2000, The Evolution of Main Sequence Star + White
Dwarf Binary Systems towards Type Ia Supernovae, A&A,
362, 1046

Li, X.-D., & van den Heuvel, E. P. J. 1997, Evolution of White
Dwarf Binaries: Supersoft X-Ray Sources and Progenitors
of Type Ia Supernovae, A&A, 322, L9

Lim, J., Chang, S., Pak, S., Kim, Y., Park, W.-K., & Im, M.
2013, Focal Reducer for CQUEAN (Camera for QUasars
in EArly uNiverse), JKAS, 46, 161

Maeda, K., & Terada, Y. 2016, Progenitors of Type Ia
Supernovae, IJMP D, 25, 1630024

Maoz, D., & Mannucci, F. 2012, Type-Ia Supernova Rates
and the Progenitor Problem: A Review, PASA, 29, 447

Nakar, E., & Sari, R. 2010, Early Supernovae Light Curves
Following the Shock Breakout, ApJ, 725, 904

Noebauer, U. M., Kromer, M., Taubenberger, S., et al. 2017,
Early Light Curves for Type Ia Supernova Explosion Mod-
els, MNRAS, 472, 2787

Nomoto, K. 1982, Accreting White Dwarf Models for Type
I Supernovae. I - Presupernova Evolution and Triggering
Mechanisms, ApJ, 253, 798

Nugent, P. E., Sullivan, M., Cenko, S. B., et al. 2011, Super-
nova SN 2011fe from an Exploding Carbon-Oxygen White
Dwarf Star, Nature, 480, 344

Olling, R. P., Mushotsky, R., Shaya, E. J., et al. 2015, No
Signature of Ejecta Interaction with a Stellar Companion
in Three type Ia Supernovae, Nature, 521, 332

Ouchi, R., & Maeda, K. 2017, Radii and Mass-Loss Rates of
Type IIb Supernova Progenitors, ApJ, 840, 90

Pakmor, R., Kromer, M., Taubenberger, S., Sim, S. A.,
Ropke, F. K., & Hillenbrandt, W. 2012, Normal Type Ia
Supernovae from Violent Mergers of White Dwarf Binaries,
ApJL, 747, L10

Park, H. S., Moon, D.-S., Zaritsky, D., et al. 2017, Dwarf
Galaxy Discoveries from the KMTNet Supernova Program.
I. The NGC 2784 Galaxy Group, ApJ, 848, 19

Park, W.-K., Pak, S., Im, M., et al. 2012, Camera for Quasars
in Early Universe (CQUEAN), PASP, 124, 839

Pastorello, A., Della Valle, M., Smartt, S. J., et al. 2007, A
Very Faint Core-Collapse Supernova in M85, Nature, 449,
1

Piro, A. L., & Morozova, V. S. 2016, Exploring the Potential
Diversity of Early Type Ia Supernova Light Curves, ApJ,
826, 96

Piro, A. L., & Nakar, E. 2013, What Can We Learn from
the Rising Light Curves of Radioactively Powered Super-
novae?, ApJ, 769, 67

Piro, A. L., & Nakar, E. 2014, Constraints on Shallow 56Ni
from the Early Light Curves of Type Ia Supernovae, ApJ,
784, 85

Rabinak, I., & Waxman, E. 2011, The Early UV/Optical
Emission from Core-Collapse Supernovae, ApJ, 728, 63

Shappee, B. J., Piro, A. L., Stanek, K. Z., et al. 2018, Strong
Evidence against a Non-degenerate Companion in SN
2012cg, ApJ, 855, 6

Silverman, J. M., Ganeshalingam, M., Cenko, S. B., et al.
2012, The Very Young Type Ia Supernova 2012cg: Discov-
ery and Early-Time Follow-Up Observations, ApJL, 756,
L7

Smartt, S. J., Maund, J. R., Hendry, M. A., et al. 2004,
Detection of a Red Supergiant Progenitor Star of a Type
II-Plateau Supernova, Sci, 303, 499

Smith, M., Nichol, R. C., Dilday, B., et al. 2012, The SDSS-II
Supernova Survey: Parameterizing the Type Ia Supernova
Rate as a Function of Host Galaxy Properties, ApJ, 755,
61

Soker, N. 2015, The Circumstellar Matter of Supernova 2014J
and the Core-Degenerate Scenario, MNRAS, 450, 1333

Sparks, W. M., & Stecher, T. P. 1974, Supernova: The Result
of the Death Spiral of a White Dwarf into a Red Giant,
ApJ, 188, 149

Tanikawa, A., Nakasato, N., Sato, Y., Nomoto, K., Maeda,
K., & Hachisu, I. 2015, Hydrodynamical Evolution of Merg-
ing Carbon-Oxygen White Dwarfs: Their Pre-Supernova
Structure and Observational Counterparts, ApJ, 907, 40

Troja, E., Piro, L., van Eerten, H., et al. 2017, The X-Ray
Counterpart to the Gravitational-Wave Event GW170817,
Nature, 551, 71

Van Dyk, S. D., Cenko, S. B., Poznanski, D., et al. 2012a,
The Red Supergiant Progenitor of Supernova 2012aw
(PTF12bvh) in Messier 95, ApJ, 756, 131

Van Dyk, S. D., Davidge, T. J., Elias-Rosa, N., et al. 2012b,
Supernova 2008bk and Its Red Supergiant Progenitor, AJ,
143, 19

Van Dyk, S. D., Zheng, W. K., Clubb, K. I., et al. 2013, The
Progenitor of Supernova 2011dh has Vanished, ApJL, 772,
L32



Intensive Monitoring Survey of Nearby Galaxies 21

Webbink, R. F. 1984, Double White Dwarfs as Progenitors
of R Coronae Borealis Stars and Type I Supernovae, ApJ,
277, 355

Whelan, J., & Iben, I. Jr. 1973, Binaries and Supernovae of
Type I, ApJ, 186, 1007

Yamanaka, M., Maeda, K., Kawabata, M., et al. 2014, Early-
Phase Photometry and Spectroscopy of Transitional Type
Ia SN 2012ht: Direct Constraint on the Rise Time, ApJL,
782, L35

Yoon, S.-C. 2015, Evolutionary Models for Type Ib/c Super-
nova Progenitors, PASA, 32, e015

Yoon, S.-C., Dessart, L., & Clocchiatti, A. 2017, Type Ib and

IIb Supernova Progenitors in Interacting Binary Systems,
ApJ, 840, 10

Yoon, S.-C., Podsiadlowski, P., & Rosswog, S. 2007, Remnant
Evolution after a Carbon-Oxygen White Dwarf Merger,
MNRAS, 380, 933

Yoon, S.-C., Woosley, S. E., & Langer, N. 2010, Type Ib/c
Supernovae in Binary Systems. I. Evolution and Properties
of the Progenitor Stars, ApJ, 725, 940

Zheng, W., Silverman, J. M., Filippenko, A. V., et al. 2013,
The Very Young Type Ia Supernova 2013dy: Discovery,
and Strong Carbon Absorption in Early-Time Spectra,
ApJL, 778, L15


	Introduction
	Target Selection
	Facilities
	SN Rate of UV-Selected Galaxies
	SNe and Other Transients in IMSNG
	Additional Science Cases
	Summary and Prospects
	Acknowledgments
	References

